Back to Search
Start Over
Classification of finite irreducible conformal modules over a class of Lie conformal algebras of Block type
- Source :
- Journal of Algebra. 499:321-336
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- We classify finite irreducible conformal modules over a class of infinite Lie conformal algebras ${\frak {B}}(p)$ of Block type, where $p$ is a nonzero complex number. In particular, we obtain that a finite irreducible conformal module over ${\frak {B}}(p)$ may be a nontrivial extension of a finite conformal module over ${\frak {Vir}}$ if $p=-1$, where ${\frak {Vir}}$ is a Virasoro conformal subalgebra of ${\frak {B}}(p)$. As a byproduct, we also obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal algebras ${\frak b}(n)$ for $n\ge1$.<br />15 pages
- Subjects :
- Quantitative Biology::Biomolecules
Pure mathematics
Class (set theory)
Algebra and Number Theory
Series (mathematics)
Mathematics::Rings and Algebras
010102 general mathematics
Subalgebra
Conformal map
Mathematics - Rings and Algebras
Extension (predicate logic)
01 natural sciences
Rings and Algebras (math.RA)
Mathematics::Quantum Algebra
0103 physical sciences
FOS: Mathematics
010307 mathematical physics
Block type
0101 mathematics
Mathematics::Representation Theory
Complex number
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 499
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....562669cd8e69086841d77ad34f8de89c