Back to Search Start Over

Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential

Authors :
Jeroen Kneppers
Tesa M. Severson
Joseph C. Siefert
Pieter Schol
Stacey E. P. Joosten
Ivan Pak Lok Yu
Chia-Chi Flora Huang
Tunç Morova
Umut Berkay Altıntaş
Claudia Giambartolomei
Ji-Heui Seo
Sylvan C. Baca
Isa Carneiro
Eldon Emberly
Bogdan Pasaniuc
Carmen Jerónimo
Rui Henrique
Matthew L. Freedman
Lodewyk F. A. Wessels
Nathan A. Lack
Andries M. Bergman
Wilbert Zwart
Chemical Biology
Immunoengineering
Lack, Nathan Alan (ORCID 0000-0001-7399-5844 & YÖK ID 120842)
Altıntaş, Umut Berkay
Kneppers, J.
Severson, T.M.
Siefert, J.C.
Schol, P.
Joosten, S.E.P.
Yu, I.P.L.
Huang, C.F.
Morova, T.
Giambartolomei, C.
Seo, J.H.
Baca, S.C.
Carneiro, I.
Emberly, E.
Pasaniuc, B.
Jerónimo, C.
Henrique, R.
Freedman, M.L.
Wessels, L.F.A.
Bergman, A.M.
Zwart, W.
Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
School of Medicine
Graduate School of Sciences and Engineering
Department of Computational Sciences and Engineering
Source :
Nature Communications, 13(1):7367. Nature Publishing Group, Nature Communications
Publication Year :
2022
Publisher :
Nature Publishing Group, 2022.

Abstract

Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients’ outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.<br />We would like to acknowledge the NKI Genomics Core Facility for Illumina sequencing and bioinformatics support and the NKI Research High-Performance Computing (RHPC) facility for computational infrastructure. We express gratitude to all members of the Zwart and Bergman lab, and members of the NKI Oncogenomics division for helpful scientific discussion. This work was supported by the Prostate Cancer Foundation (21CHAL04), Department of Defense (W81XWH-21-1-0234, W81XWH-19-1-0565), Oncode Institute and Alpe d’HuZes/KWF Dutch Cancer Society (10084).

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....55de06c697f3dfb6b6c8e581994da01b