Back to Search Start Over

Identifying Entangled Physics Relationships through Sparse Matrix Decomposition to Inform Plasma Fusion Design

Authors :
Julia B. Nakhleh
M. Giselle Fernández-Godino
Brandon Wilson
Gowri Srinivasan
John Kline
Michael Grosskopf
Publication Year :
2020

Abstract

A sustainable burn platform through inertial confinement fusion (ICF) has been an ongoing challenge for over 50 years. Mitigating engineering limitations and improving the current design involves an understanding of the complex coupling of physical processes. While sophisticated simulations codes are used to model ICF implosions, these tools contain necessary numerical approximation but miss physical processes that limit predictive capability. Identification of relationships between controllable design inputs to ICF experiments and measurable outcomes (e.g. yield, shape) from performed experiments can help guide the future design of experiments and development of simulation codes, to potentially improve the accuracy of the computational models used to simulate ICF experiments. We use sparse matrix decomposition methods to identify clusters of a few related design variables. Sparse principal component analysis (SPCA) identifies groupings that are related to the physical origin of the variables (laser, hohlraum, and capsule). A variable importance analysis finds that in addition to variables highly correlated with neutron yield such as picket power and laser energy, variables that represent a dramatic change of the ICF design such as number of pulse steps are also very important. The obtained sparse components are then used to train a random forest (RF) surrogate for predicting total yield. The RF performance on the training and testing data compares with the performance of the RF surrogate trained using all design variables considered. This work is intended to inform design changes in future ICF experiments by augmenting the expert intuition and simulations results.<br />8 pages, 7 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....55d048b73d9dbeb6c4aa2b5093fab242