Back to Search
Start Over
Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong
- Source :
- International Journal of Biometeorology. 56:43-56
- Publication Year :
- 2011
- Publisher :
- Springer Science and Business Media LLC, 2011.
-
Abstract
- This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments--an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index--physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.
- Subjects :
- Adult
Male
Atmospheric Science
Meteorology
Health, Toxicology and Mutagenesis
Equivalent temperature
Context (language use)
Wind
Environment
Wind speed
Young Adult
Thermal
Humans
Thermosensing
Relative humidity
Longitudinal Studies
Cities
Sunlight
Tropical Climate
Ecology
Temperature
Humidity
Thermal comfort
Middle Aged
Hong Kong
Environmental science
Female
Subjects
Details
- ISSN :
- 14321254 and 00207128
- Volume :
- 56
- Database :
- OpenAIRE
- Journal :
- International Journal of Biometeorology
- Accession number :
- edsair.doi.dedup.....55a5f9433620caed01a2f88378d4c585
- Full Text :
- https://doi.org/10.1007/s00484-010-0396-z