Back to Search Start Over

Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration

Authors :
Maria Bernadete Riemma Pierre
Carol L. Rocha
Raquel Pires Gonçalves
Paulo H. S. Picciani
Franceline Reynaud
Carlos Augusto Galvão Barboza
Talita Nascimento da Silva
Braulio S. Archanjo
Source :
Materials Science and Engineering: C. 97:602-612
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Biocompatible scaffolds have been used to promote cellular growth and proliferation in order to develop grafts, prostheses, artificial skins and cartilage. Electrospinning is widely studied as a method capable of producing nanofibers which enables cell attachment and proliferation, generating a functional scaffold that is suitable for many types of organs or tissues. In this study, electrospinning was used to obtain core-shell and monolithic fibers from the biocompatible poly (lactic acid) and poly (vinyl alcohol) polymers. The main purpose of this work is to produce core-shell nanofiber based scaffolds that works as a sustained delivery vehicle for BMP-2 protein, allowing those fibers to be used in the recovery of alveolar bone tissue without further bone surgery. Then, polymer nanofibers were manufactured by optimizing process parameters of coaxial electrospinning with emphasis on the most relevant ones: voltage, internal and external flows in an attempt to correlate fibers properties with protein releasing abilities. All nanofibers were characterized according to its morphology, thermal behaviour, crystallinity and release profile. For the release tests, bovine albumin was added into internal fiber for future periodontal restorage application. Obtained results demonstrate that fibers were formed with diameters up to 250 nm. According to electronic microscopy images, one could observe surface of nanofibers, thickness and core-shell morphology confirmed. X-ray diffraction analysis and contact angle tests showed fibers with low crystal degree and low hydrophobicity. Nanofibers structure affected in vitro release model tests and consequently the cellular assays.

Details

ISSN :
09284931
Volume :
97
Database :
OpenAIRE
Journal :
Materials Science and Engineering: C
Accession number :
edsair.doi.dedup.....55a1ab9483c30862f0b15c83ec8c800d