Back to Search
Start Over
Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning?
- Source :
- Hess, C, Bienert, A, Härdtle, W & von Oheimb, G 2015, ' Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning? ' Forests, vol 6, no. 11, pp. 3847-3867 . DOI: 10.3390/f6113847, Forests, Vol 6, Iss 11, Pp 3847-3867 (2015), Forests, Volume 6, Issue 11, Pages 3847-3867, Hess, C, Bienert, A, Härdtle, W & von Oheimb, G 2015, ' Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning? ', Forests, vol. 6, no. 11, pp. 3847-3867 . https://doi.org/10.3390/f6113847
- Publication Year :
- 2015
-
Abstract
- Accurate estimates of the wood volume or biomass of individual trees have gained considerable importance in recent years. The accuracy of wood volume estimation by terrestrial laser scanning (TLS) point cloud data may differ between individual trees due to species-specific differences in tree architecture. We selected three common and ecologically important central European deciduous tree species, which differ considerably in tree architectural complexity in early ontogenetic stages: Acer pseudoplatanus (simple), Sorbus aucuparia (intermediate) and Betula pendula (complex). We scanned six single young trees for each species (18 trees in total) under optimal scan conditions (single tree stand, leafless state, four scanning positions, high resolution). TLS-based volume estimates were derived for the total tree as well as for the two compartments<br />trunk and branches, using a voxel-based bounding box method. These estimates were compared with highly accurate xyolmetric (water displacement) volume measurements. Coefficients of determination between xylometric measurements and bounding box estimates were very high for total trees (R2adj = 0.99), trunks (R2adj = 0.99), and high for branches (R2adj = 0.78). The accuracy of estimations for total tree and trunk volume was highly similar among the three tree species. In contrast, significant differences were found for branch volume estimates: the accuracy was very high for Sorbus aucuparia, intermediate for Betula pendula, and low for Acer pseudoplatanus. A stepwise multiple regression showed that the accuracy of branch volume estimates was negatively related to the number of the first-order branches within diameter sizes of D ≤ 5 mm and crown surface area (R2adj = 0.61). We conclude that the accuracy in total tree and trunk volume estimates was not affected by the studied types of tree architectural complexity. The impact of the structural variability of branches and occlusion by branches was, thus, not as high as expected. In contrast, the accuracy of branch volume estimates was strongly influenced by tree architectural complexity, though not in a simple way. Because underestimations originated from different sources, the accuracy of branch volume estimates cannot be directly derived from the degree of architectural complexity. These results imply that the voxel-based bounding box method provides highly accurate total tree and trunk volume estimates, whereas further research is needed to improve branch volume estimation for young trees of different architectural types.
- Subjects :
- biology
structural complexity
young trees
Forestry
lcsh:QK900-989
Site tree
Sorbus aucuparia
xylometric measurement
biology.organism_classification
Trunk
Tree (data structure)
Tree stand
bounding box
Ecosystems Research
Minimum bounding box
ecosystem functioning
Statistics
Botany
lcsh:Plant ecology
tree architecture
terrestrial laser scanning
Volume (compression)
Mathematics
Tree measurement
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Hess, C, Bienert, A, Härdtle, W & von Oheimb, G 2015, ' Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning? ' Forests, vol 6, no. 11, pp. 3847-3867 . DOI: 10.3390/f6113847, Forests, Vol 6, Iss 11, Pp 3847-3867 (2015), Forests, Volume 6, Issue 11, Pages 3847-3867, Hess, C, Bienert, A, Härdtle, W & von Oheimb, G 2015, ' Does tree architectural complexity influence the accuracy of wood volume estimates of single young trees by terrestrial laser scanning? ', Forests, vol. 6, no. 11, pp. 3847-3867 . https://doi.org/10.3390/f6113847
- Accession number :
- edsair.doi.dedup.....559792ed73c2d5c2af724ae408bfe3f9
- Full Text :
- https://doi.org/10.3390/f6113847