Back to Search Start Over

Packing of arborescences with matroid constraints via matroid intersection

Authors :
Zoltán Szigeti
Shin-ichi Tanigawa
Csaba Király
Operációkutatási Tanszék
Matematika Doktori Iskola
MTA-ELTE Egerváry Jenő Kombinatorikus Optimalizálási Kutatócsoport
Optimisation Combinatoire (G-SCOP_OC)
Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Source :
Mathematical Programming, Mathematical Programming, Springer Verlag, 2020, 184 (1-2), pp.85-117. ⟨10.1007/s10107-019-01377-0⟩
Publication Year :
2019

Abstract

International audience; Edmonds' arborescence packing theorem characterizes directed graphs that have arc-disjoint spanning arborescences in terms of connectivity. Later he also observed a characterization in terms of matroid intersection. Since these fundamental results, intensive research has been done for understanding and extending these results. In this paper we shall extend the second characterization to the setting of reachability-based packing of arborescences. The reachability-based packing problem was introduced by Cs. Kiraly as a common generalization of two different extensions of the spanning arborescence packing problem, one is due to Kamiyama, Katoh, and Takizawa, and the other is due to Durand de Gevigney, Nguyen, and Szigeti. Our new characterization of the arc sets of reachability-based packing in terms of matroid intersection gives an efficient algorithm for the minimum weight reachability-based packing problem, and it also enables us to unify further arborescence packing theorems and Edmonds' matroid intersection theorem. For the proof, we also show how a new class of matroids can be defined by extending an earlier construction of matroids from intersecting submodular functions to bi-set functions based on an idea of Frank.

Details

ISSN :
00255610 and 14364646
Database :
OpenAIRE
Journal :
Mathematical Programming, Mathematical Programming, Springer Verlag, 2020, 184 (1-2), pp.85-117. ⟨10.1007/s10107-019-01377-0⟩
Accession number :
edsair.doi.dedup.....559749b58a037fd7d60778bf339a2524