Back to Search Start Over

Radiative pulsar magnetospheres: aligned rotator

Authors :
Jérôme Pétri
Observatoire astronomique de Strasbourg (ObAS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Observatoire astronomique de Strasbourg (OAS)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
HEP, INSPIRE
Source :
Monthly Notice-Royal Astronomical Society-Letters, Monthly Notice-Royal Astronomical Society-Letters-, Wiley-Blackwell, 2019, 491 (1), pp.L46-L50. ⟨10.1093/mnrasl/slz162⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Force-free neutron star magnetospheres are nowadays well known and found through numerical simulations. Even extension to general relativity has recently been achieved. However, those solutions are by definition dissipationless, meaning that the star is unable to accelerate particles and let them radiate any photon. Interestingly, the force-free model has no free parameter however it must be superseded by a dissipative mechanism within the plasma. In this paper, we investigate the magnetosphere electrodynamics for particles moving in the radiation reaction regime, using the limit where acceleration is fully balanced by radiation, also called Aristotelian dynamics. An Ohm's law is derived, from which the dissipation rate is controlled by a one parameter family of solutions depending on the pair multiplicity~$\kappa$. The spatial extension of the dissipation zone is found self-consistently from the simulations. We show that the radiative magnetosphere of an aligned rotator tends to the force-free regime whenever the pair multiplicity becomes moderately large, $\kappa \gg 1$. However, for low multiplicity, a substantial fraction of the spindown energy goes into particle acceleration and radiation in addition to the Poynting flux, the latter remaining only dominant for large multiplicities. We show that the work done on the plasma occurs predominantly in the equatorial current sheet right outside the light-cylinder.<br />Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Letters

Details

Language :
English
ISSN :
17453925 and 17453933
Database :
OpenAIRE
Journal :
Monthly Notice-Royal Astronomical Society-Letters, Monthly Notice-Royal Astronomical Society-Letters-, Wiley-Blackwell, 2019, 491 (1), pp.L46-L50. ⟨10.1093/mnrasl/slz162⟩
Accession number :
edsair.doi.dedup.....5593dae7dda977ddcfbe229441fa90cd
Full Text :
https://doi.org/10.1093/mnrasl/slz162⟩