Back to Search Start Over

Understanding the Fundamental Role of π/π, σ/σ, and σ/π Dispersion Interactions in Shaping Carbon-Based Materials

Authors :
Frank De Proft
Julia Contreras-García
Tatiana Woller
Mercedes Alonso
Francisco J. Martin-Martinez
Paul Geerlings
Faculty of Sciences and Bioengineering Sciences
Chemistry
General Chemistry
Quantum Chemistry - Molecular Modelling
Publication Year :
2014

Abstract

Noncovalent interactions involving aromatic rings, such as π-stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion-corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene⋅⋅⋅methane and cyclohexane⋅⋅⋅methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel-displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non-additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....557a941cd101d76cc347dde578c557cb