Back to Search
Start Over
Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thinfilm silicon solar cells
- Source :
- Nano Energy 35 (2017): 341–349. doi:10.1016/j.nanoen.2017.04.016, info:cnr-pdr/source/autori:Sanjay K. Ram,?, Derese Desta, Rita Rizzoli, Bruno P. Falcão, Emil H. Eriksen, Michele Bellettato, Bjarke R. Jeppesen, Pia B. Jensen, Caterina Summonte, Rui N. Pereira, Arne Nylandsted Larsen, Peter Balling/titolo:Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thinfilm silicon solar cells/doi:10.1016%2Fj.nanoen.2017.04.016/rivista:Nano Energy/anno:2017/pagina_da:341/pagina_a:349/intervallo_pagine:341–349/volume:35, Ram, S K, Desta, D, Rizzoli, R, Falcao, B P, Eriksen, E H, Bellettato, M, Jeppesen, B R, Jensen, P B, Summonte, C, Pereira, R N, Larsen, A N & Balling, P 2017, ' Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells ', Nano Energy, vol. 35, pp. 341-349 . https://doi.org/10.1016/j.nanoen.2017.04.016
- Publication Year :
- 2017
-
Abstract
- Self-organizing nanopatterns can enable economically competitive, industrially applicable light-harvesting platforms for thin-film solar cells. In this work, we present transparent solar cell substrates having quasi-periodic uniaxial nanowrinkle patterns with high optical haze values. The self-organized nanowrinkle template is created by controlled heat-shrinking of metal-deposited pre-stretched polystyrene sheets. A scalable UV-nanoimprinting method is used to transfer the nanopatterns to glass substrates on which single-junction hydrogenated amorphous silicon p-i-n solar cells are subsequently fabricated. The structural and optical analyses of the solar cell show that the nanowrinkle pattern is replicated throughout the solar cell structure leading to enhanced absorption of light. The efficient broadband light-trapping in the nanowrinkle solar cells results in very high 18.2 mA/cm2 short-circuit current density and 9.5% energy-conversion efficiency, which respectively are 35.8% and 39.7% higher than the values obtained in flat-substrate solar cells. The cost- and time-efficient technique introduces a promising new approach to customizable light-management strategies in thin-film solar cells.
- Subjects :
- Silicon thin-film solar cells
Amorphous silicon
Photovoltaic devices
Light-management
DEVICES
Materials science
02 engineering and technology
Quantum dot solar cell
NANOSTRUCTURES
01 natural sciences
Polymer solar cell
law.invention
Monocrystalline silicon
chemistry.chemical_compound
SUBSTRATE
law
light harvesting
0103 physical sciences
Solar cell
Nanowrinkles
General Materials Science
Plasmonic solar cell
Electrical and Electronic Engineering
Nanomolding
010302 applied physics
thin film solar cells
Renewable Energy, Sustainability and the Environment
business.industry
Hybrid solar cell
PERFORMANCE
021001 nanoscience & nanotechnology
Copper indium gallium selenide solar cells
WRINKLES
photovoltaics
PHOTON MANAGEMENT
chemistry
LAYER
Finite element method modeling
Optoelectronics
nanotechnologies
0210 nano-technology
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Nano Energy 35 (2017): 341–349. doi:10.1016/j.nanoen.2017.04.016, info:cnr-pdr/source/autori:Sanjay K. Ram,?, Derese Desta, Rita Rizzoli, Bruno P. Falcão, Emil H. Eriksen, Michele Bellettato, Bjarke R. Jeppesen, Pia B. Jensen, Caterina Summonte, Rui N. Pereira, Arne Nylandsted Larsen, Peter Balling/titolo:Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thinfilm silicon solar cells/doi:10.1016%2Fj.nanoen.2017.04.016/rivista:Nano Energy/anno:2017/pagina_da:341/pagina_a:349/intervallo_pagine:341–349/volume:35, Ram, S K, Desta, D, Rizzoli, R, Falcao, B P, Eriksen, E H, Bellettato, M, Jeppesen, B R, Jensen, P B, Summonte, C, Pereira, R N, Larsen, A N & Balling, P 2017, ' Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells ', Nano Energy, vol. 35, pp. 341-349 . https://doi.org/10.1016/j.nanoen.2017.04.016
- Accession number :
- edsair.doi.dedup.....556bc086491096f69a123f3f32124105
- Full Text :
- https://doi.org/10.1016/j.nanoen.2017.04.016