Back to Search Start Over

In vitro and in vivo modulation of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and calcitonin-gene related peptide-like immunoreactivities in adult rat sensory neurons

Authors :
Didier Martin
Philippe Lefebvre
Pierre Leprince
Paul Delrée
Jean-Marie Rigo
Bernard Rogister
Gustave Moonen
Jean Schoenen
Brigitte Malgrange
Catherine Sadzot-Delvaux
Pierre A. Robe
Source :
Neuroscience. 51:401-410
Publication Year :
1992
Publisher :
Elsevier BV, 1992.

Abstract

In a previous work we have shown that culturing adult rat dorsal root ganglia neurons modifies their neurotransmitter phenotype in such a way that cultured neurons synthesize transmitters that are not found in situ, while several other transmitters are expressed in a much higher percentage of neurons in culture than in situ [Schoenen J. et al. (1989) J. Neurosci. Res.22, 473–487]. The aim of the present study was to investigate the origin and the nature of the relevant environmental signals that allow this plasticity to be expressed, focusing on three neurotransmitters: 5-hydroxytryptamine, thyrotropin-releasing hormone and calcitonin-gene related peptide. The main results can be summarized as follows: (1) culturing cells in fetal calf serum or on feeder layers of astrocytes, Schwann cells or fibroblasts partially inhibits the serotoninergic phenotype of dorsal root ganglia neurons; (2) in vivo disconnection of dorsal root ganglia from their spinal targets but not from their peripheral or supraspinal targets induces a significant increase of the percentage of 5-hydroxytryptamine- and thyrotropin-releasing hormone-positive neurons in disconnected ganglia; (3) growth factors such as ciliary neuronotrophic factor or basic fibroblast growth factor but not nerve growth factor repress 5-hydroxytryptamine and calcitonin gene-related peptide immunoreactivity in cultured sensory neurons. In conclusion, neurotransmitter gene expression of adult dorsal root ganglia neurons is controlled by complex influences. Our data suggest that thyrotropin-releasing hormone and 5-hydroxytryptamine gene expression are tonically repressed in vivo by factors originating from the spinal segmental level and that growth factors such as ciliary neurotrophic factor or basic fibroblast growth factor could be potential vectors of this repressing effect.

Details

ISSN :
03064522
Volume :
51
Database :
OpenAIRE
Journal :
Neuroscience
Accession number :
edsair.doi.dedup.....555ccd050c5edbdef6e153ba113ead4c