Back to Search
Start Over
Tumor attenuation by combined heparan sulfate and polyamine depletion
- Source :
- Proceedings of the National Academy of Sciences. 99:371-376
- Publication Year :
- 2001
- Publisher :
- Proceedings of the National Academy of Sciences, 2001.
-
Abstract
- Cells depend on polyamines for growth and their depletion represents a strategy for the treatment of cancer. Polyamines assemblede novothrough a pathway sensitive to the inhibitor, α-difluoromethylornithine (DFMO). However, the presence of cell-surface heparan sulfate proteoglycans may provide a salvage pathway for uptake of circulating polyamines, thereby sparing cells from the cytostatic effect of DFMO. Here we show that genetic or pharmacologic manipulation of proteoglycan synthesis in the presence of DFMO inhibits cell proliferationin vitroandin vivo. In cell culture, mutant cells lacking heparan sulfate were more sensitive to the growth inhibitory effects of DFMO than wild-type cells or mutant cells transfected with the cDNA for the missing biosynthetic enzyme. Moreover, extracellular polyamines did not restore growth of mutant cells, but completely reversed the inhibitory effect of DFMO in wild-type cells. In a mouse model of experimental metastasis, DFMO provided in the water supply also dramatically diminished seeding and growth of tumor foci in the lungs by heparan sulfate-deficient mutant cells compared with the controls. Wild-type cells also formed tumors less efficiently in mice fed both DFMO and a xylose-based inhibitor of heparan sulfate proteoglycan assembly. The effect seemed to be specific for heparan sulfate, because a different xyloside known to affect only chondroitin sulfate did not inhibit tumor growth. Hence, combined inhibition of heparan sulfate assembly and polyamine synthesis may represent an additional strategy for cancer therapy.
- Subjects :
- DNA, Complementary
Eflornithine
Time Factors
Spermine
Antineoplastic Agents
CHO Cells
Mice, SCID
Biology
Models, Biological
Mice
chemistry.chemical_compound
Cricetinae
Polyamines
Animals
Chondroitin sulfate
Enzyme Inhibitors
Glucuronosyltransferase
Neoplasm Metastasis
Multidisciplinary
Dose-Response Relationship, Drug
Models, Genetic
Cell growth
Transfection
Heparan sulfate
Biological Sciences
Molecular biology
In vitro
Xyloside
chemistry
Female
Proteoglycans
Heparitin Sulfate
Polyamine
Neoplasm Transplantation
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 99
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....55434ee6e7552953cedd218f8fb09222
- Full Text :
- https://doi.org/10.1073/pnas.012346499