Back to Search
Start Over
Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?
- Source :
- Infectious Disease Modelling, Infectious Disease Modelling, Vol 5, Iss, Pp 510-524 (2020)
- Publication Year :
- 2020
-
Abstract
- The novel coronavirus (COVID-19) that emerged from Wuhan city of China in late December 2019 continue to pose devastating public health and economic challenges across the world. Although the community-wide implementation of basic non-pharmaceutical intervention measures, such as social-distancing, quarantine of suspected COVID-19 cases, isolation of confirmed cases, use of face masks in public, and contact-tracing, have been quite effective in curtailing and mitigating the burden of the pandemic, it is universally believed that the use of an anti-COVID-19 vaccine is necessary to build the community herd immunity needed to effectively control and eliminate the pandemic. This study is based on the design and use of a mathematical model for assessing the population-level impact of a hypothetical imperfect anti-COVID-19 vaccine on the control of COVID-19. An analytical expression for the minimum number of unvaccinated susceptible individuals needed to be vaccinated to achieve vaccine-induced community herd immunity is derived. The epidemiological consequence of the herd immunity threshold is that the disease can be effectively controlled or eliminated if the minimum herd immunity threshold is achieved in the community. Simulations of the model, using baseline parameter values obtained from fitting the model with mortality data relevant to COVID-19 dynamics in the US states of New York and Florida, as well as for the entire US, show that, for an anti-COVID-19 vaccine with an assumed protective efficacy of 80%, the minimum herd immunity threshold for the entire US, state of New York and state of Florida are, respectively, 90%, 84% and 85%. Furthermore, it was shown that, while a significantly large increase in vaccination rate (from baseline) is necessarily needed to eliminate COVID-19 from the entire US, the pandemic can be eliminated from the states of New York and Florida if the vaccination rate is marginally increased (by as low as 10%) from its baseline value. The prospect of COVID-19 elimination in the US or in the two states of New York and Florida is greatly enhanced if the vaccination program is combined with a public mask use program or an effective social-distancing measure. Such combination of strategies significantly reduces the vaccine-induced herd immunity threshold. Finally, it is shown that the vaccination program is more likely to lead to COVID-19 elimination in the state of Florida, followed by the state of New York and then the entire US.
- Subjects :
- medicine.medical_specialty
Isolation (health care)
Coronavirus disease 2019 (COVID-19)
Social distancing
030231 tropical medicine
Population
Article
Herd immunity
law.invention
lcsh:Infectious and parasitic diseases
03 medical and health sciences
0302 clinical medicine
law
Environmental health
Quarantine
Pandemic
medicine
lcsh:RC109-216
030212 general & internal medicine
education
Baseline (configuration management)
education.field_of_study
Non-pharmaceutical intervention
business.industry
SARS-CoV-2
Social distance
Public health
Applied Mathematics
Health Policy
Vaccination
COVID-19
Infectious Diseases
Business
Contact tracing
Subjects
Details
- ISSN :
- 24680427
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- Infectious Disease Modelling
- Accession number :
- edsair.doi.dedup.....553ff5cc461d671ff481cecb41db7c43