Back to Search
Start Over
Spaces of polynomials without 3-fold real roots
- Source :
- J. Math. Kyoto Univ. 42, no. 3 (2002), 509-516
- Publication Year :
- 2002
- Publisher :
- Duke University Press, 2002.
-
Abstract
- Let $P_{n}^{d}(\mathbb{R})$ denote the space consisiting of all monic polynomials $f(z) \in \mathbb{R}[z]$ of degree $d$ which have no real roots of multplicity $\geq n$. In this paper we study the homotopy types of the spaces $P_{n}^{d}(\mathbb{R})$ for the case $n = 3$.
Details
- ISSN :
- 21562261
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Kyoto Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....5511d6053d46fa91f06303d65af3e5d3
- Full Text :
- https://doi.org/10.1215/kjm/1250283847