Back to Search Start Over

Spaces of polynomials without 3-fold real roots

Authors :
Koichi Hirata
Kohhei Yamaguchi
Source :
J. Math. Kyoto Univ. 42, no. 3 (2002), 509-516
Publication Year :
2002
Publisher :
Duke University Press, 2002.

Abstract

Let $P_{n}^{d}(\mathbb{R})$ denote the space consisiting of all monic polynomials $f(z) \in \mathbb{R}[z]$ of degree $d$ which have no real roots of multplicity $\geq n$. In this paper we study the homotopy types of the spaces $P_{n}^{d}(\mathbb{R})$ for the case $n = 3$.

Details

ISSN :
21562261
Volume :
42
Database :
OpenAIRE
Journal :
Kyoto Journal of Mathematics
Accession number :
edsair.doi.dedup.....5511d6053d46fa91f06303d65af3e5d3
Full Text :
https://doi.org/10.1215/kjm/1250283847