Back to Search Start Over

Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations

Authors :
Zhenghui Wen
Diego Pintossi
Manuel Nuño
Timothy Noël
HIMS Other Research (FNWI)
Flow Chemistry (HIMS, FNWI)
Simulation of Biomolecular Systems (HIMS, FNWI)
Source :
Nature Communications, 13:6147. Nature Publishing Group
Publication Year :
2022

Abstract

Photocatalytic hydrogen atom transfer (HAT) processes have been the object of numerous studies showcasing the potential of the homogeneous photocatalyst tetrabutylammonium decatungstate (TBADT) for the functionalization of C(sp3)–H bonds. However, to translate these studies into large-scale industrial processes, careful considerations of catalyst loading, cost, and removal are required. This work presents organic solvent nanofiltration (OSN) as an answer to reduce TBADT consumption, increase its turnover number and lower its concentration in the product solution, thus enabling large-scale photocatalytic HAT-based transformations. The operating parameters for a suitable membrane for TBADT recovery in acetonitrile were optimized. Continuous photocatalytic C(sp3)-H alkylation and amination reactions were carried out with in-line TBADT recovery via two OSN steps. Promisingly, the observed product yields for the reactions with in-line catalyst recycling are comparable to those of reactions performed with pristine TBADT, therefore highlighting that not only catalyst recovery (>99%, TON > 8400) is a possibility, but also that it does not happen at the expense of reaction performance.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, 13:6147. Nature Publishing Group
Accession number :
edsair.doi.dedup.....55109b8bf797578796856fca457b5b1f