Back to Search Start Over

Fourier-Correlation Imaging

Authors :
Daniel Braun
Yann Kerr
Bernard Rouge
Younes Monjid
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP)
Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Centre d'études spatiales de la biosphère ( CESBIO )
Université Paul Sabatier - Toulouse 3 ( UPS ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS )
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Source :
J.Appl.Phys., J.Appl.Phys., 2018, 123 (7), pp.074502. ⟨10.1063/1.5017680⟩, J.Appl.Phys., 2018, 123, pp.074502. 〈10.1063/1.5017680〉
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

We investigate to what extent correlating the Fourier components at slightly shifted frequencies of the fluctuations of the electric field measured with a one-dimensional antenna array on board of a satellite flying over a plane, allows one to measure the two-dimensional brilliance temperature as function of position in the plane. We find that the achievable spatial resolution resulting from just two antennas is of the order of $h\chi$, with $\chi=c/(\Delta r \omega_0)$, both in the direction of flight of the satellite and in the direction perpendicular to it, where $\Delta r$ is the distance between the antennas, $\omega_0$ the central frequency, $h$ the height of the satellite over the plane, and $c$ the speed of light. Two antennas separated by a distance of about 100m on a satellite flying with a speed of a few km/s at a height of the order of 1000km and a central frequency of order GHz allow therefore the imaging of the brilliance temperature on the surface of Earth with a resolution of the order of one km. For a single point source, the relative radiometric resolution is of order $\sqrt{\chi}$, but for a uniform temperature field in a half plane left or right of the satellite track it is only of order $1/\chi^{3/2}$, indicating that two antennas do not suffice for a precise reconstruction of the temperature field. Several ideas are discussed how the radiometric resolution could be enhanced. In particular, having $N$ antennas all separated by at least a distance of the order of the wave-length, allows one to increase the signal-to-noise ratio by a factor of order $N$, but requires to average over $N^2$ temperature profiles obtained from as many pairs of antennas.<br />Comment: 39 pages of latex in preprint format, 2 figures

Details

Language :
English
Database :
OpenAIRE
Journal :
J.Appl.Phys., J.Appl.Phys., 2018, 123 (7), pp.074502. ⟨10.1063/1.5017680⟩, J.Appl.Phys., 2018, 123, pp.074502. 〈10.1063/1.5017680〉
Accession number :
edsair.doi.dedup.....5501b7e0046df16a3a703f0cafc9a8fd