Back to Search Start Over

Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era

Authors :
Neukom
L. A. Barboza
M. P. Erb
F. Shi
J. Emile-Geay
M. N. Evans
J. Franke
D. Kaufman
L. Lücke
K. Rehfeld
A. Schurer
V. Valler
F. Zhu
S. Brönnimann
G. J. Hakim
B. J. Henley
F. C. Ljungqvist
N. McKay
and L. von Gunten
Source :
Nature Geoscience, Neukom, R, Barboza, L A, Erb, M P, Shi, F, Emile-Geay, J, Evans, M N, Franke, J, Kaufman, D S, Lücke, L, Rehfeld, K, Schurer, A, Zhu, F, Brönniman, S, Hakim, G J, Henley, B J, Charpentier Ljungqvist, F, McKay, N, Valler, V & von Gunten, L 2019, ' Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era ', Nature Geoscience . https://doi.org/10.1038/s41561-019-0400-0, Nature geoscience
Publication Year :
2019

Abstract

Multidecadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature reconstructions using seven different statistical methods that draw from a global collection of temperature-sensitive palaeoclimate records. Our reconstructions display synchronous multidecadal temperature fluctuations that are coherent with one another and with fully forced millennial model simulations from the Coupled Model Intercomparison Project Phase 5 across the Common Era. A substantial portion of pre-industrial (1300–1800 CE) variability at multidecadal timescales is attributed to volcanic aerosol forcing. Reconstructions and simulations qualitatively agree on the amplitude of the unforced global mean multidecadal temperature variability, thereby increasing confidence in future projections of climate change on these timescales. The largest warming trends at timescales of 20 years and longer occur during the second half of the twentieth century, highlighting the unusual character of the warming in recent decades.

Details

ISSN :
17520894
Database :
OpenAIRE
Journal :
Nature Geoscience
Accession number :
edsair.doi.dedup.....54ebcd6de207de60badcdafd8c19a564
Full Text :
https://doi.org/10.1038/s41561-019-0400-0