Back to Search Start Over

Foresighted digital twin for situational agent selection in production control

Authors :
Marco Wurster
Marvin Carl May
Gisela Lanza
Andreas Kuhnle
Leonard Overbeck
Source :
Procedia CIRP, Procedia CIRP, 99, 27–32
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

As intelligent Data Acquisition and Analysis in Manufacturing nears its apex, a new era of Digital Twins is dawning. Foresighted Digital Twins enable short- to medium-term system behavior predictions to infer optimal production operation strategies. Creating up-to-the-minute Digital Twins requires both the availability of real-time data and its incorporation and serve as a stepping-stone into developing unprecedented forms of production control. Consequently, we regard a new concept of Digital Twins that includes foresight, thereby enabling situational selection of production control agents. One critical element for adequate system predictions is human behavior as it is neither rule-based nor deterministic, which we therefore model applying Reinforcement Learning. Owing to these ever-changing circumstances, rigid operation strategies crucially restrain reactions, as opposed to circumstantial control strategies that hence can outperform traditional approaches. Building on enhanced foresights we show the superiority of this approach and present strategies for improved situational agent selection.

Details

ISSN :
22128271
Volume :
99
Database :
OpenAIRE
Journal :
Procedia CIRP
Accession number :
edsair.doi.dedup.....54e179e5ef3de8410753e6fe656e85a6
Full Text :
https://doi.org/10.1016/j.procir.2021.03.005