Back to Search Start Over

The importance of radiative pumping on the emission of the H_2O submillimeter lines in galaxies

Authors :
González-Alfonso, Eduardo
Fischer, Jacqueline
Goicoechea, Javier R.
Yang, Chentao
Pereira-Santaella, Miguel
Stewart,Kenneth P.
Ministerio de Ciencia e Innovación (España)
National Aeronautics and Space Administration (US)
European Commission
Comunidad de Madrid
Ministerio de Ciencia, Innovación y Universidades (España)
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

9 pags., 5 figs.<br />H_2O submillimeter emission is a powerful diagnostic of the molecular interstellar medium in a variety of sources, including low- and high-mass star forming regions of the Milky Way, and from local to high redshift galaxies. However, the excitation mechanism of these lines in galaxies has been debated, preventing a basic consensus on the physical information that H_2O provides. Both radiative pumping due to H_2O absorption of far-infrared photons emitted by dust and collisional excitation in dense shocked gas have been proposed to explain the H_2O emission. Here we propose two basic diagnostics to distinguish between the two mechanisms: 1) in shock excited regions, the ortho-H_2O 3_{21}-2_{12} 75um and the para-H_2O 2_{20}-1_{11} 101um rotational lines are expected to be in emission while, if radiative pumping dominates, both far-infrared lines are expected to be in absorption; 2) based on statistical equilibrium of H_2O level populations, the radiative pumping scenario predicts that the apparent isotropic net rate of far-infrared absorption in the 3_{21}-2_{12} (75um) and 2_{20}-1_{11} (101um) lines should be higher than or equal to the apparent isotropic net rate of submillimeter emission in the 3_{21}-3_{12} (1163 GHz) and 2_20-2_{11} (1229 GHz) lines, respectively. Applying both criteria to all 16 galaxies and several galactic high-mass star-forming regions where the H_2O 75um and submillimeter lines have been observed with Herschel/PACS and SPIRE, we show that in most (extra)galactic sources the H_2O submillimeter line excitation is dominated by far-infrared pumping, with collisional excitation of the low-excitation levels in some of them. Based on this finding, we revisit the interpretation of the correlation between the luminosity of the H_2O 988 GHz line and the source luminosity in the combined galactic and extragalactic sample.<br />EG-A is a Research Associate at the HarvardSmithsonian Center for Astrophysics, and thanks the Spanish MICINN for support under project PID2019-105552RB-C41. JRG thanks the Spanish MCINN for funding support under grant PID2019-106110GB-I00. JF and KPS gratefully acknowledge support through NASA grant NNH17ZD001N-ADAP. CY acknowledges support from ERC Advanced Grant 789410. MPS acknowledges support from the Comunidad de Madrid through the Atracción de Talento Investigador Grant 2018-T1/TIC-11035 and PID2019-105423GA-I00 (MCIU/AEI/FEDER,UE). PACS was developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE was developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ.Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....54de69d8537939cee9f87020ec47eef6
Full Text :
https://doi.org/10.48550/arxiv.2209.06444