Back to Search
Start Over
Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
- Source :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2014, 561, pp.A114. ⟨10.1051/0004-6361/201219945⟩, Astronomy and Astrophysics-A&A, 2014, 561, pp.A114. ⟨10.1051/0004-6361/201219945⟩
- Publication Year :
- 2013
- Publisher :
- arXiv, 2013.
-
Abstract
- Astronomy and Astrophysics 561 (2014): A114 reproduced with permission from Astronomy & Astrophysics<br />Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust<br />S. Ertel and J.-C. Augereau thank the French National Research Agency (ANR, contract ANR-2010 BLAN-0505-01, EXOZODI) and PNP-CNES for financial support. C. Eiroa, J. Maldonado, J. P. Marshall, and B. Montesinos are partially supported by Spanish grant AYA 2011-26202. A. V. Krivov acknowledges support from the DFG, grant Kr 2164/10-1. T. Löhne acknowledges support from the DFG, grant Lo 1715/1-1. R. Liseau acknowledges the continued support by the Swedish National Space Board (SNSB)
- Subjects :
- Planetesimal
010504 meteorology & atmospheric sciences
FOS: Physical sciences
Context (language use)
Astrophysics
01 natural sciences
Stars: individual: HIP 17439
Spitzer Space Telescope
Planet
0103 physical sciences
Beta Pictoris
Astrophysics::Solar and Stellar Astrophysics
individual: HIP 17439 [Stars]
010303 astronomy & astrophysics
ComputingMilieux_MISCELLANEOUS
Astrophysics::Galaxy Astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
0105 earth and related environmental sciences
Physics
[PHYS]Physics [physics]
Earth and Planetary Astrophysics (astro-ph.EP)
Debris disk
Física
Astronomy and Astrophysics
Circumstellar matter
Infrared: stars
Stars
Astrophysics - Solar and Stellar Astrophysics
13. Climate action
Space and Planetary Science
stars [Infrared]
Astrophysics::Earth and Planetary Astrophysics
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Main sequence
Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- ISSN :
- 00046361 and 14320746
- Database :
- OpenAIRE
- Journal :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2014, 561, pp.A114. ⟨10.1051/0004-6361/201219945⟩, Astronomy and Astrophysics-A&A, 2014, 561, pp.A114. ⟨10.1051/0004-6361/201219945⟩
- Accession number :
- edsair.doi.dedup.....54c689c2bc947e43208be2aedf9004d1
- Full Text :
- https://doi.org/10.48550/arxiv.1312.6385