Back to Search Start Over

Detection of anomalous driving behaviors by unsupervised learning of graphs

Authors :
Alessia Saggese
Luc Brun
Mario Vento
Benito Cappellania
Equipe Image - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
Università degli Studi di Salerno (UNISA)
Source :
2014 International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2014 International Conference on Advanced Video and Signal Based Surveillance (AVSS), Aug 2014, Seoul, France. ⟨10.1109/AVSS.2014.6918702⟩, AVSS
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

In this paper we propose a graph based approach for detecting abnormal behaviors starting from the analysis of vehicles’ trajectories. The scene is partitioned into zones and is dynamically represented as a graph by evaluating the distribution of trajectories belonging to the training set. Furthermore, four different strategies are proposed in order to verify if a test trajectory belongs to the scene and then can be considered normal by evaluating the probability that this trajectory belongs to the graph. Our algorithms have been tested on the standard MIT Trajectories dataset and the obtained results confirm the effectiveness of the proposed approach.

Details

Language :
English
Database :
OpenAIRE
Journal :
2014 International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2014 International Conference on Advanced Video and Signal Based Surveillance (AVSS), Aug 2014, Seoul, France. ⟨10.1109/AVSS.2014.6918702⟩, AVSS
Accession number :
edsair.doi.dedup.....54bd78a9e70f890ea860db4a8e398cdc
Full Text :
https://doi.org/10.1109/AVSS.2014.6918702⟩