Back to Search Start Over

Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

Authors :
Adina Ciomaga
Cyril Imbert
Guy Barles
Emmanuel Chasseigne
Laboratoire de Mathématiques et Physique Théorique (LMPT)
Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Centre de Mathématiques et de Leurs Applications (CMLA)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
École normale supérieure - Paris (ENS Paris)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2012, 252 (11), pp.6012-6060. ⟨10.1016/j.jde.2012.02.013⟩, Journal of Differential Equations, 2012, 252 (11), pp.6012-6060. ⟨10.1016/j.jde.2012.02.013⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

We establish new Hölder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii–Lionsʼs method. We thus extend the Hölder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local–nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.

Details

Language :
English
ISSN :
00220396 and 10902732
Database :
OpenAIRE
Journal :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2012, 252 (11), pp.6012-6060. ⟨10.1016/j.jde.2012.02.013⟩, Journal of Differential Equations, 2012, 252 (11), pp.6012-6060. ⟨10.1016/j.jde.2012.02.013⟩
Accession number :
edsair.doi.dedup.....54b8e32faec67a5b9fb38c2d9db8716e