Back to Search Start Over

Galois descent of semi-affinoid spaces

Authors :
Daniele Turchetti
Lorenzo Fantini
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Nicolas Oresme (LMNO)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Source :
Mathematische Zeitschrift, Mathematische Zeitschrift, Springer, 2018, 290 (3-4), pp.1085-1114. ⟨10.1007/s00209-018-2054-9⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a $K$-analytic space $X$, provided that $X\otimes_KL$ is semi-affinoid for some finite tamely ramified extension $L$ of $K$. As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.<br />Comment: Exposition improved and minor modifications. 37 pages. To appear in Math. Z

Details

Language :
English
ISSN :
00255874 and 14321823
Database :
OpenAIRE
Journal :
Mathematische Zeitschrift, Mathematische Zeitschrift, Springer, 2018, 290 (3-4), pp.1085-1114. ⟨10.1007/s00209-018-2054-9⟩
Accession number :
edsair.doi.dedup.....54ac8cb01959eb1119d097b9bebdb134
Full Text :
https://doi.org/10.1007/s00209-018-2054-9⟩