Back to Search Start Over

Genomic and immunogenic protein diversity of Erysipelothrix rhusiopathiae isolated from pigs in Great Britain: implications for vaccine protection

Authors :
Roman Biek
Susanna Williamson
Tanja Opriessnig
Jill R. Thomson
Taya Forde
Nichith Kollanandi Ratheesh
William T. Harvey
Source :
Forde, T L, Ratheesh, N K, Harvey, W T, Thomson, J R, Williamson, S, Biek, R & Opriessnig, T 2020, ' Genomic and immunogenic protein diversity of Erysipelothrix rhusiopathiae isolated from pigs in Great Britain: implications for vaccine protection ', Frontiers in Microbiology . https://doi.org/10.3389/fmicb.2020.00418, Frontiers in Microbiology, Vol 11 (2020)
Publication Year :
2020

Abstract

Erysipelas, caused by the bacterium Erysipelothrix rhusiopathiae, is re-emerging in swine and poultry production systems worldwide. While the global genomic diversity of this species has been characterized, how much of this genomic and functional diversity is maintained at smaller scales is unclear. Specifically, while several key immunogenic surface proteins have been identified for E. rhusiopathiae, little is known about their presence among field strains and their divergence from vaccines, which could result in vaccine failure. Here, a comparative genomics approach was taken to determine the diversity of E. rhusiopathiae strains in pigs in Great Britain over nearly three decades, as well as to assess the field strains' divergence from the vaccine strain most commonly used in British pigs. In addition, the presence/absence and variability of 13 previously described immunogenic surface proteins was determined, including SpaA which is considered a key immunogen. We found a high diversity of E. rhusiopathiae strains in British pigs, similar to the situation described in European poultry but in contrast to swine production systems in Asia. Of the four clades of E. rhusiopathiae found globally, three were represented among British pig isolates, with Clade 2 being the most common. All British pig isolates had one amino acid difference in the immunoprotective domain of the SpaA protein compared to the vaccine strain. However, we were able to confirm using in silico structural protein analyses that this difference is unlikely to compromise vaccine protection. Of 12 other known immunogenic surface proteins of E. rhusiopathiae examined, 11 were found to be present in all British pig isolates and the vaccine strain, but with highly variable degrees of conservation at the amino acid sequence level, ranging from 0.3 to 27% variant positions. Moreover, the phylogenetic incongruence of these proteins suggests that horizontal transfer of genes encoding for antigens is commonplace for this bacterium. We hypothesize that the sequence variants in these proteins could be responsible for differences in the efficacy of the immune response. Our results provide the necessary basis for testing this hypothesis through in vitro and in vivo studies.

Details

Language :
English
ISSN :
1664302X
Database :
OpenAIRE
Journal :
Forde, T L, Ratheesh, N K, Harvey, W T, Thomson, J R, Williamson, S, Biek, R & Opriessnig, T 2020, ' Genomic and immunogenic protein diversity of Erysipelothrix rhusiopathiae isolated from pigs in Great Britain: implications for vaccine protection ', Frontiers in Microbiology . https://doi.org/10.3389/fmicb.2020.00418, Frontiers in Microbiology, Vol 11 (2020)
Accession number :
edsair.doi.dedup.....54aadddc785e1e3179b79e9fa613a38f
Full Text :
https://doi.org/10.3389/fmicb.2020.00418