Back to Search Start Over

Determination of Substrate Specificity for Peptide Deformylase through the Screening of a Combinatorial Peptide Library

Authors :
Ying Zhou
‡ Yun-Jin Hu
Dehua Pei
and P. T. Ravi Rajagopalan
Yaoming Wei
Source :
Biochemistry. 38:643-650
Publication Year :
1998
Publisher :
American Chemical Society (ACS), 1998.

Abstract

Peptide deformylase is an essential Fe2+ metalloenzyme that catalyzes the removal of the N-terminal formyl group from nascent polypeptides in eubacteria. In vivo, the deformylase is capable of deformylating most of the polypeptides in a bacterial cell, which contain diverse N-terminal sequences. In this work, we have developed a combinatorial method to systematically examine the sequence specificity of peptide deformylase. A peptide library that contains all possible N-terminally formylated tetrapeptides was constructed on TentaGel resin, with a unique peptide sequence on each resin bead. Limited treatment with the Escherichia coli deformylase resulted in the deformylation of those peptides that are the most potent substrates of the enzyme. By using an enzyme-linked assay, the beads containing the deformylated peptides were identified and isolated. Peptide sequence analysis using matrix-assisted laser desorption ionization mass spectrometry revealed a consensus sequence, formyl-Met-X-Z-Tyr (X = any amino acid except for aspartate and glutamate; Z = lysine, arginine, tyrosine, or phenylalanine), for the E. coli enzyme. The deformylase is also capable of efficient deformylation of formyl-Phe-Tyr-(Phe/Tyr) peptides. These results demonstrate that, despite being a broad-specificity enzyme, the peptide deformylase deformylates different peptides at drastically different rates. In addition, the selectivity of peptide deformylase for the N-formyl over the N-acetyl group has been studied with N-alpha-fluoroacetyl peptides, and the results suggest that both electronic and steric factors are responsible for the observed specificity. The deformylase was also shown to exhibit esterase activity. These results will facilitate the design of specific deformylase inhibitors as potential antibacterial agents. This combinatorial method should be generally applicable to the study of the substrate specificity of other acylases and peptidases.

Details

ISSN :
15204995 and 00062960
Volume :
38
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....548f3697123623e30e06b7a2bb05d095