Back to Search Start Over

Visual Localization using Sequence Matching Based on Multi-feature Combination

Authors :
Yongliang Qiao
Yassine Ruichek
Cindy Cappelle
Laboratoire d'Electronique, d'Informatique et d'Image UMR CNRS 6306 ( Le2i )
Université de Technologie de Belfort-Montbeliard ( UTBM ) -Centre National de la Recherche Scientifique ( CNRS ) -École Nationale Supérieure d'Arts et Métiers ( ENSAM ) -Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Université de Technologie de Belfort-Montbeliard ( UTBM )
Université Bourgogne Franche-Comté ( UBFC )
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i)
Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Université de Technologie de Belfort-Montbeliard (UTBM)
Université Bourgogne Franche-Comté [COMUE] (UBFC)
Source :
Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, 2016, Lecce, Italy. pp.324-335, 2016, 〈10.1007/978-3-319-48680-2_29〉, Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, 2016, Lecce, Italy. pp.324-335, ⟨10.1007/978-3-319-48680-2_29⟩, Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796, ACIVS
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Visual localization in changing environment is one of the most challenging topics in computer vision and robotic community. The difficulty of this task is related to the strong appearance changes that occur in scenes due to presence of dynamic objects, weather or season changes. In this paper, we propose a new method which operates by matching query image sequences to an image database acquired previously (video acquired when the vehicle was traveling the environment). In order to improve matching accuracy, multi-feature is constructed by combining global GIST descriptor and local LBP descriptor to represent image sequence. Then, similarity measurement according to Chi-square distance is used for effective sequences matching. For experimental evaluation, we conducted study of the relationship between image sequence length and sequences matching performance. To show its effectiveness, the proposed method is tested and evaluated in four seasons outdoor environments. The results have shown improved precision-recall performance against state-of-the-art SeqSLAM algorithm.

Details

Language :
English
ISBN :
978-3-319-48679-6
ISBNs :
9783319486796
Database :
OpenAIRE
Journal :
Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, 2016, Lecce, Italy. pp.324-335, 2016, 〈10.1007/978-3-319-48680-2_29〉, Advanced Concepts for Intelligent Vision Systems (ACIVS'2016), Lecture Notes in Computer Science (LNCS), vol. 10016, 2016, Lecce, Italy. pp.324-335, ⟨10.1007/978-3-319-48680-2_29⟩, Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796, ACIVS
Accession number :
edsair.doi.dedup.....5471604c090e6d88455e1012f4e93003
Full Text :
https://doi.org/10.1007/978-3-319-48680-2_29〉