Back to Search Start Over

ODACH: a one-shot distributed algorithm for Cox model with heterogeneous multi-center data

Authors :
Chongliang Luo
Rui Duan
Adam C. Naj
Henry R. Kranzler
Jiang Bian
Yong Chen
Source :
Scientific reports. 12(1)
Publication Year :
2021

Abstract

We developed a One-shot Distributed Algorithm for Cox proportional-hazards model to analyze Heterogeneous multi-center time-to-event data (ODACH) circumventing the need for sharing patient-level information across sites. This algorithm implements a surrogate likelihood function to approximate the Cox log-partial likelihood function that is stratified by site using patient-level data from a lead site and aggregated information from other sites, allowing the baseline hazard functions and the distribution of covariates to vary across sites. Simulation studies and application to a real-world opioid use disorder study showed that ODACH provides estimates close to the pooled estimator, which analyzes patient-level data directly from all sites via a stratified Cox model. Compared to the estimator from meta-analysis, the inverse variance-weighted average of the site-specific estimates, ODACH estimator demonstrates less susceptibility to bias, especially when the event is rare. ODACH is thus a valuable privacy-preserving and communication-efficient method for analyzing multi-center time-to-event data.

Details

ISSN :
20452322
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....5421d6ddc9d66af08c848f879ed8abcf