Back to Search Start Over

Novel Association of HK1 with Glycated Hemoglobin in a Non-Diabetic Population: A Genome-Wide Evaluation of 14,618 Participants in the Women's Genome Health Study

Authors :
Daniel I. Chasman
Alex Parker
Paul M. Ridker
David M. Nathan
Robert Y.L. Zee
Joseph P. Miletich
Guillaume Paré
Source :
PLoS Genetics, PLoS Genetics, Vol 4, Iss 12, p e1000312 (2008)
Publication Year :
2008
Publisher :
Public Library of Science (PLoS), 2008.

Abstract

Type 2 diabetes is a leading cause of morbidity and mortality. While genetic variants have been found to influence the risk of type 2 diabetes mellitus, relatively few studies have focused on genes associated with glycated hemoglobin, an index of the mean blood glucose concentration of the preceding 8–12 weeks. Epidemiologic studies and randomized clinical trials have documented the relationship between glycated hemoglobin levels and the development of long-term complications in diabetes; moreover, higher glycated hemoglobin levels in the subdiabetic range have been shown to predict type 2 diabetes risk and cardiovascular disease. To examine the common genetic determinants of glycated hemoglobin levels, we performed a genome-wide association study that evaluated 337,343 SNPs in 14,618 apparently healthy Caucasian women. The results show that glycated hemoglobin levels are associated with genetic variation at the GCK (rs730497; P = 2.8×10−12), SLC30A8 (rs13266634; P = 9.8×10−8), G6PC2 (rs1402837; P = 6.8×10−10), and HK1 (rs7072268; P = 6.4×10−9) loci. While associations at the GCK, SLC30A8, and G6PC2 loci are confirmatory, the findings at HK1 are novel. We were able to replicate this novel association in an independent validation sample of 455 additional non-diabetic men and women. HK1 encodes the enzyme hexokinase, the first step in glycolysis and a likely candidate for the control of glucose metabolism. This observed genetic association between glycated hemoglobin levels and HK1 polymorphisms paves the way for further studies of the role of HK1 in hemoglobin glycation, glucose metabolism, and diabetes.<br />Author Summary Type 2 diabetes is a leading cause of morbidity and mortality in both the developed and developing world. Because the main metabolic characteristic of diabetes is increased blood glucose concentration, we sought to uncover the genetic determinants of glycated hemoglobin, an index of the mean blood glucose concentration of the preceding 8–12 weeks. Taking advantage of new technologies allowing us to interrogate genetic variation on a whole-genome basis, we found that variations in the GCK, SLC30A8, G6PC2, and HK1 genes are important determinants of glycated hemoglobin concentrations. While associations with the GCK, SLC30A8, and G6PC2 genes have previously been identified in genetic studies of diabetes and blood glucose concentration, the findings at HK1 are novel. HK1 encodes the enzyme hexokinase, responsible for the first step in glucose utilization and a likely candidate for the control of glucose metabolism. This observed genetic association between glycated hemoglobin levels and HK1 genetic variants paves the way for further studies of the role of HK1 in glucose metabolism and diabetes.

Details

ISSN :
15537404
Volume :
4
Database :
OpenAIRE
Journal :
PLoS Genetics
Accession number :
edsair.doi.dedup.....5406200b09f3dc33cc7557d8ab665df2