Back to Search Start Over

The matching of experimental polymer processing flows to viscoelastic numerical simulation

Authors :
Thierry Coupez
R. J. Koopmans
Manfred H. Wagner
A. Bernnat
G. Rekers
Bruno Vergnes
B. Debbaut
van M. Gurp
Malcolm R. Mackley
Jean-François Agassant
Arjen C.B. Bogaerds
Gerrit W. M. Peters
Wilco M.H. Verbeeten
Frank P. T. Baaijens
E. Wassner
A. Goublomme
O.H. Nouatin
A.L. Gavrus
W.F. Zoetelief
K. Lee
Heike Bastian
H.M. Laun
Centre de Mise en Forme des Matériaux (CEMEF)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Technische Universiteit Eindhoven, Department of Biomedical Engineering
Technische Universiteit Eindhoven (TU/e)
University of Stuttgart, Institut für Kunststofftechnologie
University of Stuttgart
Engineering Plastics Europe
Technische Universiteit Eindhoven, Materials Technology
Fluent Benelux, ANSYS/Polyflow s.a.
Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)
Ghent University, Department for Molecular Biomedical Research
Universiteit Gent = Ghent University [Belgium] (UGENT)
Dow Europe GmbH
Polymer Physics GKP
Department of Chemical Engineering - University of Cambridge
University of Cambridge [UK] (CAM)
Dutch Polymer Institute - DPI
Universidad de Burgos, Department of Civil Engineering
Universidad de Burgos
Technische Universität Berlin (TU)
BASF, Polymer Physics
DSM Research
Soft Tissue Biomech. & Tissue Eng.
Cardiovascular Biomechanics
Processing and Performance
Source :
International Polymer Processing, International Polymer Processing, 2002, 17 (1), p.3-10, Scopus-Elsevier, International Polymer Processing, 17(1), 3-10. Carl Hanser Verlag GmbH & Co. KG
Publication Year :
2002
Publisher :
HAL CCSD, 2002.

Abstract

This paper describes work carried out in order to match experimental processing flows to numerical simulation. The work has brought together a consortium that has developed reliable experimental methods by which processing flows can be achieved in the laboratory and then ranked against numerical simulation. A full rheological characterisation of a selected range of polymers was made and the results compared from different laboratories. The data was fitted to a number of rheological models. Multi-mode parameter fitting was universal for the linear viscoelastic response. Particular attention was paid to the non linear response of the material. Prototype industrial flow experiments were carried out for a number of geometries in different laboratories and the flow birefringence technique was used to map out the experimentally observed stress fields for different polymers in a range of complex flows that contained both extensional and shear flow components. Numerical simulation was carried out using a number of algorithms and a range of constitutive equations. In order to make a quantitative comparison between experiment and simulation, an Advanced Rheological Tool (ART) module was developed that was able in some cases to quantify the level of fit between the numerically predicted and the experimentally observed stress patterns. In addition the ART module was able to optimise certain non-linear parameters in order to improve the quality of fit between experiment and simulation.

Details

Language :
English
ISSN :
0930777X
Database :
OpenAIRE
Journal :
International Polymer Processing, International Polymer Processing, 2002, 17 (1), p.3-10, Scopus-Elsevier, International Polymer Processing, 17(1), 3-10. Carl Hanser Verlag GmbH & Co. KG
Accession number :
edsair.doi.dedup.....540487b649f68ae7acbabbd55ffbfff0