Back to Search Start Over

Attachment of Molecular Hydrogen to an Isolated Boron Cation: An Infrared and ab initio Study

Authors :
Viktoras Dryza
Evan J. Bieske
Berwyck L. J. Poad
Source :
Journal of the American Chemical Society. 130:12986-12991
Publication Year :
2008
Publisher :
American Chemical Society (ACS), 2008.

Abstract

Structural properties of the B(+)-H2 electrostatic complex are investigated through its rotationally resolved infrared spectrum in the H-H stretch region (3905-3975 cm(-1)). The spectrum, which was obtained by monitoring B(+) photofragments while the IR wavelength was scanned, is consistent with the complex having a T-shaped structure and a vibrationally averaged intermolecular separation of 2.26 A, which decreases by 0.04 A when the H2 subunit is vibrationally excited. The H-H stretch transition of B(+)-H2 is red-shifted by 220.6 +/- 1.5 cm(-1) from that of the free H2 molecule, much more than for other dihydrogen complexes with comparable binding energies. Properties of B(+)-H2 and the related Li(+)-H2, Na(+)-H2, and Al(+)-H2 complexes are explored through ab initio calculations at the MP2/aug-cc-pVTZ level. The unusually large red-shift for B(+)-H2 is explained as due to electron donation from the H2 sigma(g) bonding orbital to the unoccupied 2p(z) orbital on the B(+) ion.

Details

ISSN :
15205126 and 00027863
Volume :
130
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....53fa781c4213779d8c4058f693614433
Full Text :
https://doi.org/10.1021/ja8018302