Back to Search
Start Over
The shift map on Floer trajectory spaces
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- In this article we give a uniform proof why the shift map on Floer homology trajectory spaces is scale smooth. This proof works for various Floer homologies, periodic, Lagrangian, Hyperk\"ahler, elliptic or parabolic, and uses Hilbert space valued Sobolev theory.<br />Comment: 32 pages, 3 figures
- Subjects :
- Pure mathematics
Scale (ratio)
57R58 Floer homology, 46B70 Interpolation between normed linear spaces, 58B99 Infinite-dimensional manifolds
Hilbert space
Mathematics::Geometric Topology
Functional Analysis (math.FA)
Sobolev space
Mathematics - Functional Analysis
symbols.namesake
Floer homology
Mathematics - Symplectic Geometry
symbols
FOS: Mathematics
Symplectic Geometry (math.SG)
Geometry and Topology
Mathematics::Differential Geometry
ddc:510
Trajectory (fluid mechanics)
Mathematics::Symplectic Geometry
Lagrangian
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....53e7dba1a13394b9df9a9dd0fb6f1cfe
- Full Text :
- https://doi.org/10.48550/arxiv.1803.03826