Back to Search
Start Over
Cellular Automaton Models for Competition in Patchy Environments: Facilitation, Inhibition, and Tolerance
- Source :
- Bulletin of Mathematical Biology. 61:625-649
- Publication Year :
- 1999
- Publisher :
- Springer Science and Business Media LLC, 1999.
-
Abstract
- We have developed cellular automaton models for two species competing in a patchy environment. We have modeled three common types of competition: facilitation (in which the winning species can colonize only after the losing species has arrived) inhibition (in which either species is able to prevent the other from colonizing) and tolerance (in which the species most tolerant of reduced resource levels wins). The state of a patch is defined by the presence or absence of each species. State transition probabilities are determined by rates of disturbance, competitive exclusion, and colonization. Colonization is restricted to neighboring patches. In all three models, disturbance permits regional persistence of species that are excluded by competition locally. Persistence, and hence diversity, is maximized at intermediate disturbance frequencies. If disturbance and dispersal rates are sufficiently high, the inferior competitor need not have a dispersal advantage to persist. Using a new method for measuring the spatial patterns of nominal data, we show that none of these competition models generates patchiness at equilibrium. In the inhibition model, however, transient patchiness decays very slowly. We compare the cellular automaton models to the corresponding mean-field patch-occupancy models, in which colonization is not restricted to neighboring patches and depends on spatially averaged species frequencies. The patch-occupancy model does an excellent job of predicting the equilibrium frequencies of the species and the conditions required for coexistence, but not of predicting transient behavior.
- Subjects :
- Pharmacology
Disturbance (geology)
Ecology
General Mathematics
General Neuroscience
media_common.quotation_subject
Population Dynamics
Immunology
Environment
Biology
Models, Biological
General Biochemistry, Genetics and Molecular Biology
Competition (biology)
Cellular automaton
Intermediate Disturbance Hypothesis
Computational Theory and Mathematics
Spatial ecology
Facilitation
Biological dispersal
Colonization
General Agricultural and Biological Sciences
Ecosystem
Mathematics
General Environmental Science
media_common
Subjects
Details
- ISSN :
- 00928240
- Volume :
- 61
- Database :
- OpenAIRE
- Journal :
- Bulletin of Mathematical Biology
- Accession number :
- edsair.doi.dedup.....53c04efb3c57ea85f0e62e749863af18
- Full Text :
- https://doi.org/10.1006/bulm.1999.0090