Back to Search Start Over

Cellular Automaton Models for Competition in Patchy Environments: Facilitation, Inhibition, and Tolerance

Authors :
Ron J. Etter
Hal Caswell
Source :
Bulletin of Mathematical Biology. 61:625-649
Publication Year :
1999
Publisher :
Springer Science and Business Media LLC, 1999.

Abstract

We have developed cellular automaton models for two species competing in a patchy environment. We have modeled three common types of competition: facilitation (in which the winning species can colonize only after the losing species has arrived) inhibition (in which either species is able to prevent the other from colonizing) and tolerance (in which the species most tolerant of reduced resource levels wins). The state of a patch is defined by the presence or absence of each species. State transition probabilities are determined by rates of disturbance, competitive exclusion, and colonization. Colonization is restricted to neighboring patches. In all three models, disturbance permits regional persistence of species that are excluded by competition locally. Persistence, and hence diversity, is maximized at intermediate disturbance frequencies. If disturbance and dispersal rates are sufficiently high, the inferior competitor need not have a dispersal advantage to persist. Using a new method for measuring the spatial patterns of nominal data, we show that none of these competition models generates patchiness at equilibrium. In the inhibition model, however, transient patchiness decays very slowly. We compare the cellular automaton models to the corresponding mean-field patch-occupancy models, in which colonization is not restricted to neighboring patches and depends on spatially averaged species frequencies. The patch-occupancy model does an excellent job of predicting the equilibrium frequencies of the species and the conditions required for coexistence, but not of predicting transient behavior.

Details

ISSN :
00928240
Volume :
61
Database :
OpenAIRE
Journal :
Bulletin of Mathematical Biology
Accession number :
edsair.doi.dedup.....53c04efb3c57ea85f0e62e749863af18
Full Text :
https://doi.org/10.1006/bulm.1999.0090