Back to Search
Start Over
Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
- Source :
- Scientific Reports, Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Publishing Group UK, 2021.
-
Abstract
- Like other experimental techniques, X-ray Photon Correlation Spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on Convolutional Neural Network Encoder-Decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models performance and their applicability limits are discussed.<br />Comment: 5 pages, 10 figures
- Subjects :
- 0301 basic medicine
FOS: Computer and information sciences
030103 biophysics
Computer Science - Machine Learning
Statistical noise
Computer science
Noise reduction
Science
FOS: Physical sciences
02 engineering and technology
Correlation function (quantum field theory)
Convolutional neural network
Signal
Characterization and analytical techniques
Article
Machine Learning (cs.LG)
03 medical and health sciences
Representation (mathematics)
Condensed Matter - Materials Science
Multidisciplinary
Noise (signal processing)
Experimental data
Materials Science (cond-mat.mtrl-sci)
Scientific data
021001 nanoscience & nanotechnology
Medicine
0210 nano-technology
Algorithm
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....53b37a083954083d3feef19b8888c193