Back to Search Start Over

Tenascin-R is expressed by Schwann cells in the peripheral nervous system

Authors :
Anton Wernig
Jörg Nellen
Sergio M. Gloor
Rainer Probstmeier
Penka Pesheva
Source :
Journal of neuroscience research. 64(1)
Publication Year :
2001

Abstract

The extracellular matrix glycoprotein tenascin-R (TN-R) has been implicated in a variety of cell-matrix interactions involved in the molecular control of axon guidance and neural cell migration during development and regeneration of the central nervous system (CNS). Whereas TN-R is amply expressed in the early postnatal and adult mammalian CNS, the protein has so far not been detected in different compartments of the peripheral nervous system (PNS). Here we provide first evidence that TN-R (predominantly TN-R 160 isoform) is transiently expressed in the sciatic nerve of late embryonic (E14-18) and neonatal mice, while at later developmental stages, both protein and mRNA are downregulated. In vitro, TN-R protein was found to be expressed by both undifferentiated and neuronally differentiated PC12 cells and by L1-positive Schwann cells (SC), but not by other neural and non-neural cell types in cell cultures derived from embryonic (E17/18) hindlimbs and neonatal sciatic nerves. In the developing PNS, TN-R expression correlated with axon growth and SC migration during the period of skeletal muscle innervation. Based on different in vitro approaches, we found that the substrate-bound glycoprotein selectively inhibits the fibronectin-dependent: (1) neurite outgrowth from dorsal root ganglion neurons (strongly expressing alpha5beta1 integrin and the disialoganglioside GD3) by a ganglioside-sensitive signaling mechanism; and (2) migration of primary myoblasts and other non-neuronal cells in a ganglioside-independent manner. Our findings suggest the functional role of TN-R in PNS pattern formation during distinct stages of axon pathfinding and skeletal muscle innervation.

Details

ISSN :
03604012
Volume :
64
Issue :
1
Database :
OpenAIRE
Journal :
Journal of neuroscience research
Accession number :
edsair.doi.dedup.....53b16377d8334949e42aad1be21235f5