Back to Search
Start Over
Tube Expansion Deformation Enables In Situ Synchrotron X-ray Scattering Measurements during Extensional Flow-Induced Crystallization of Poly l-Lactide Near the Glass Transition
- Source :
- Polymers, Vol 10, Iss 3, p 288 (2018), Polymers, Polymers; Volume 10; Issue 3; Pages: 288
- Publication Year :
- 2018
- Publisher :
- MDPI, 2018.
-
Abstract
- Coronary Heart Disease (CHD) is one of the leading causes of death worldwide, claiming over seven million lives each year. Permanent metal stents, the current standard of care for CHD, inhibit arterial vasomotion and induce serious complications such as late stent thrombosis. Bioresorbable vascular scaffolds (BVSs) made from poly L-lactide (PLLA) overcome these complications by supporting the occluded artery for 3-6 months and then being completely resorbed in 2-3 years, leaving behind a healthy artery. The BVS that recently received clinical approval is, however, relatively thick (~150 μm, approximately twice as thick as metal stents ~80 μm). Thinner scaffolds would facilitate implantation and enable treatment of smaller arteries. The key to a thinner scaffold is careful control of the PLLA microstructure during processing to confer greater strength in a thinner profile. However, the rapid time scales of processing (~1 s) defy prediction due to a lack of structural information. Here, we present a custom-designed instrument that connects the strain-field imposed on PLLA during processing to in situ development of microstructure observed using synchrotron X-ray scattering. The connection between deformation, structure and strength enables processing-structure-property relationships to guide the design of thinner yet stronger BVSs. © 2018 by the authors.
- Subjects :
- Materials science
Polymers and Plastics
PLLA
bioresorbable vascular scaffolds
stretch blow molding
biaxial elongation
SAXS
WAXS
Biaxial elongation
Bioresorbable vascular scaffolds
Stretch blow molding
02 engineering and technology
030204 cardiovascular system & hematology
Article
law.invention
lcsh:QD241-441
03 medical and health sciences
0302 clinical medicine
lcsh:Organic chemistry
law
Crystallization
Scattering
Small-angle X-ray scattering
X-ray
General Chemistry
021001 nanoscience & nanotechnology
Microstructure
Synchrotron
Bioresorbable vascular scaffold
Deformation (engineering)
0210 nano-technology
Glass transition
Biomedical engineering
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Polymers, Vol 10, Iss 3, p 288 (2018), Polymers, Polymers; Volume 10; Issue 3; Pages: 288
- Accession number :
- edsair.doi.dedup.....53addbaeaf838a781b0ab33d7f4635ce