Back to Search
Start Over
Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism
- Source :
- Scientific Reports
- Publication Year :
- 2015
-
Abstract
- Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface.
- Subjects :
- 0301 basic medicine
Cutinase
Models, Molecular
Amyloid
Magnaporthe
Magnetic Resonance Spectroscopy
Hydrophobin
Protein Conformation
Fungus
Microscopy, Atomic Force
Article
Fungal Proteins
03 medical and health sciences
Protein structure
Microscopy, Electron, Transmission
Plant Diseases
chemistry.chemical_classification
Fungal protein
Multidisciplinary
030102 biochemistry & molecular biology
biology
fungi
food and beverages
Oryza
biology.organism_classification
030104 developmental biology
Enzyme
Biochemistry
chemistry
Biophysics
Self-assembly
Protein Multimerization
Hydrophobic and Hydrophilic Interactions
Subjects
Details
- ISSN :
- 20452322
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- Scientific reports
- Accession number :
- edsair.doi.dedup.....53ad43f49b05ada40b4296a9d011b225