Back to Search Start Over

Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation

Authors :
Christine E. Schmidt
Kazunori Hoshino
Zhiquan Luo
Jae Young Lee
Ashwini Gopal
Karthik Kumar
Xiaojing Zhang
Paul S. Ho
Bin Li
Source :
Biomedical Microdevices. 10:611-622
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

We designed and fabricated silicon probe with nanophotonic force sensor to directly stimulate neurons (PC12) and measured its effect on neurite initiation and elongation. A single-layer pitch-variable diffractive nanogratings was fabricated on silicon nitride probe using e-beam lithography, reactive ion etching and wet-etching techniques. The nanogratings consist of flexure folding beams suspended between two parallel cantilevers of known stiffness. The probe displacement, therefore the force, can be measured through grating transmission spectrum. We measured the mechanical membrane characteristics of PC12 cells using the force sensors with displacement range of 10 mum and force sensitivity 8 muN/mum. Young's moduli of 425 +/- 30 Pa are measured with membrane deflection of 1% for PC12 cells cultured on polydimethylsiloxane (PDMS) substrate coated with collagen or laminin in Ham's F-12K medium. In a series of measurements, we have also observed stimulation of directed neurite contraction up to 6 mum on extended probing for a time period of 30 min. This method is applicable to measure central neurons mechanics under subtle tensions for studies on development and morphogenesis. The close synergy between the nano-photonic measurements and neurological verification can improve our understanding of the effect of external conditions on the mechanical properties of cells during growth and differentiation.

Details

ISSN :
15728781 and 13872176
Volume :
10
Database :
OpenAIRE
Journal :
Biomedical Microdevices
Accession number :
edsair.doi.dedup.....53acfbbe2f4b3fb50bdbc4d498a9c64a
Full Text :
https://doi.org/10.1007/s10544-008-9172-9