Back to Search Start Over

A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition

Authors :
Gwenaëlle Lashermes
Daryl L. Moorhead
Robert L. Sinsabaugh
Department of Environmental Sciences [Toledo USA]
University of Toledo
Fractionnement des AgroRessources et Environnement - UMR-A 614 (FARE)
Université de Reims Champagne-Ardenne (URCA)-SFR Condorcet
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
Department of Biology [New Mexico]
The University of New Mexico [Albuquerque]
USDA National Institute of Food and Agriculture Competitive Grant no. 2005-35107-16281
NSF Ecosystems Program grants DEB-0946257 and DEB-0918718
and the Environment and Agronomy Division of INRA.
Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA)-SFR Condorcet
Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Fractionnement des AgroRessources et Environnement (FARE)
Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA)
Source :
Soil Biology and Biochemistry, Soil Biology and Biochemistry, Elsevier, 2012, 53, pp.133-141. ⟨10.1016/j.soilbio.2012.05.011⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

We developed an Extracellular EnZYme model (EEZY) of decomposition that produces two separate pools of C- and N-acquiring enzymes, that in turn hydrolyze two qualitatively different substrates, one containing only C (e.g., cellulose) and the other containing both C and N (e.g., chitin or protein). Hence, this model approximates the actions of commonly measured indicator enzymes s-1,4-glucosidase and s-1,4-N-acetylglucosaminidase (or leucine aminopeptidase) as they hydrolyze cellulose and chitin (or protein), respectively. EEZY provides an analytical solution to the allocation of these two enzymes, which in turn release C and N from the two substrates to maximize microbial growth. Model behaviors were both qualitatively and quantitatively consistent with patterns of litter decay generated by other decomposition models. However, EEZY demonstrated greater sensitivity to the C:N of individual substrate pools in addition to responding to factors directly affecting enzyme activity. Output approximated field observations of extracellular enzyme activities from studies of terrestrial soils, aquatic sediments, freshwater biofilm and plankton communities. Although EEZY is largely a theoretical model, simulated C- and N-acquiring enzyme activities approximated a 1:1 ratio, consistent with the bulk of these field observations, only when the N-containing substrate had a C:N ratio similar to commonly occurring substrates (e.g., proteins or chitin). This result supported the emerging view of the stoichiometry of extracellular enzyme activities from an environmental context, which suggests that a relatively narrow range of microbial C:N, carbon use efficiency and soil/sediment organic matter C:N across ecosystems explains the tendency towards this 1:1 ratio of enzyme activities associated with C- and N-acquisition. Sensitivity analyses indicated that simulated extracellular enzyme activity was most responsive to variations in carbon use efficiency of microorganisms, although kinetic characteristics of enzymes also had significant impacts. Thus EEZY provides a quantitative framework in which to interpret mechanisms underlying empirical patterns of extracellular enzyme activity.

Details

Language :
English
ISSN :
00380717
Database :
OpenAIRE
Journal :
Soil Biology and Biochemistry, Soil Biology and Biochemistry, Elsevier, 2012, 53, pp.133-141. ⟨10.1016/j.soilbio.2012.05.011⟩
Accession number :
edsair.doi.dedup.....539cad2ccd290286848531d8adf86fd3
Full Text :
https://doi.org/10.1016/j.soilbio.2012.05.011⟩