Back to Search
Start Over
Improved Planetary Rover Inertial Navigation and Wheel Odometry Performance through Periodic Use of Zero-Type Constraints
- Source :
- IROS
- Publication Year :
- 2019
-
Abstract
- We present an approach to enhance wheeled planetary rover dead-reckoning localization performance by leveraging the use of zero-type constraint equations in the navigation filter. Without external aiding, inertial navigation solutions inherently exhibit cubic error growth. Furthermore, for planetary rovers that are traversing diverse types of terrain, wheel odometry is often unreliable for use in localization, due to wheel slippage. For current Mars rovers, computer vision-based approaches are generally used whenever there is a high possibility of positioning error; however, these strategies require additional computational power, energy resources, and significantly slow down the rover traverse speed. To this end, we propose a navigation approach that compensates for the high likelihood of odometry errors by providing a reliable navigation solution that leverages non-holonomic vehicle constraints as well as state-aware pseudo-measurements (e.g., zero velocity and zero angular rate) updates during periodic stops. By using this, computationally expensive visual-based corrections could be performed less often. Experimental tests that compare against GPS-based localization are used to demonstrate the accuracy of the proposed approach. The source code, post-processing scripts, and example datasets associated with the paper are published in a public repository.<br />8 pages, 9 figures, Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019
- Subjects :
- FOS: Computer and information sciences
0209 industrial biotechnology
Traverse
business.industry
Computer science
010401 analytical chemistry
Real-time computing
Terrain
02 engineering and technology
Filter (signal processing)
Mars Exploration Program
01 natural sciences
0104 chemical sciences
Computer Science::Robotics
Computer Science - Robotics
020901 industrial engineering & automation
Odometry
ROVER
Global Positioning System
business
Robotics (cs.RO)
Inertial navigation system
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- IROS
- Accession number :
- edsair.doi.dedup.....539b74d1c78fd7e8f00cdad2dba22a11