Back to Search Start Over

Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface

Authors :
Berger, Pierre
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Journal de l’École polytechnique — Mathématiques. 10:525-547
Publication Year :
2023
Publisher :
Cellule MathDoc/CEDRAM, 2023.

Abstract

We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors (intregrable KAM island) among analytic, symplectic diffeomorphism of any closed surface. In particilar this solves a problem by F. Przytycki (1982). Theorem A (Main result). For every analytic and closed, oriented surface (S, Leb), there exists a symplectic analytic map f ∈ Diff^ω_Leb (S) of any isotopy class, such that

Details

ISSN :
2270518X
Volume :
10
Database :
OpenAIRE
Journal :
Journal de l’École polytechnique — Mathématiques
Accession number :
edsair.doi.dedup.....53900c49a61a4a9118100082bdc469c3
Full Text :
https://doi.org/10.5802/jep.224