Back to Search Start Over

Some remarks on the size of tubular neighborhoods in contact topology and fillability

Authors :
Klaus Niederkrüger
Francisco Presas
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Geom. Topol., Geom. Topol., 2010, 14 (2), pp.719-754. ⟨10.2140/gt.2010.14.719⟩, Geom. Topol. 14, no. 2 (2010), 719-754
Publication Year :
2008
Publisher :
arXiv, 2008.

Abstract

The well-known tubular neighborhood theorem for contact submanifolds states that a small enough neighborhood of such a submanifold N is uniquely determined by the contact structure on N, and the conformal symplectic structure of the normal bundle. In particular, if the submanifold N has trivial normal bundle then its tubular neighborhood will be contactomorphic to a neighborhood of Nx{0} in the model space NxR^{2k}. In this article we make the observation that if (N,\xi_N) is a 3-dimensional overtwisted submanifold with trivial normal bundle in (M,\xi), and if its model neighborhood is sufficiently large, then (M,\xi) does not admit an exact symplectic filling.<br />Comment: 19 pages, 2 figures; added example of manifold that is not fillable by neighborhood criterium; typos

Details

Database :
OpenAIRE
Journal :
Geom. Topol., Geom. Topol., 2010, 14 (2), pp.719-754. ⟨10.2140/gt.2010.14.719⟩, Geom. Topol. 14, no. 2 (2010), 719-754
Accession number :
edsair.doi.dedup.....537d875dbfa5abc7b9c31de631c92d17
Full Text :
https://doi.org/10.48550/arxiv.0812.2108