Back to Search Start Over

Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities

Authors :
Sarah M. Batt
Haihong Huang
Gang Li
Bin Wang
Lei Fu
Yu Lu
Peng-Xu Wang
Rongfei Qin
Gurdyal S. Besra
Source :
Journal of Medicinal Chemistry
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

In this study, we report the design and synthesis of a series of novel thiophene-arylamide compounds derived from the noncovalent decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1) inhibitor TCA1 through a structure-based scaffold hopping strategy. Systematic optimization of the two side chains flanking the thiophene core led to new lead compounds bearing a thiophene-arylamide scaffold with potent antimycobacterial activity and low cytotoxicity. Compounds 23j, 24f, 25a, and 25b exhibited potent in vitro activity against both drug-susceptible (minimum inhibitory concentration (MIC) = 0.02–0.12 μg/mL) and drug-resistant (MIC = 0.031–0.24 μg/mL) tuberculosis strains while retaining potent DprE1 inhibition (half maximal inhibitory concentration (IC50) = 0.2–0.9 μg/mL) and good intracellular antimycobacterial activity. In addition, these compounds showed good hepatocyte stability and low inhibition of the human ether-à-go-go related gene (hERG) channel. The representative compound 25a with acceptable pharmacokinetic property demonstrated significant bactericidal activity in an acute mouse model of tuberculosis. Moreover, the molecular docking study of template compound 23j provides new insight into the discovery of novel antitubercular agents targeting DprE1.

Details

ISSN :
15204804 and 00222623
Volume :
64
Database :
OpenAIRE
Journal :
Journal of Medicinal Chemistry
Accession number :
edsair.doi.dedup.....536580c5e2b8d800da0123eeeaed483d
Full Text :
https://doi.org/10.1021/acs.jmedchem.1c00263