Back to Search
Start Over
High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection
- Source :
- Biosensors and Bioelectronics. 117:628-636
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Numerous efforts have been made to measure tastes for various purposes. However, most taste information is still obtained by human sensory evaluation. It is difficult to quantify a degree of taste or establish taste standard. Although artificial taste sensors called electronic tongues utilizing synthetic materials such as polymers, semiconductors, or lipid membranes have been developed, they have limited performance due to their low sensitivity and specificity. Recently, bioelectronic tongues fabricated by integrating human taste receptors and nanomaterial-based sensor platforms have been found to have high performance for measuring tastes with human-like taste perception. However, human umami taste receptor is heterodimeric class C GPCR composed of human taste receptor type 1 member 1 (T1R1) and member 3 (T1R3). Such complicated structure makes it difficult to fabricate bioelectronic tongue. The objective of this study was to develop a protein-based bioelectronic tongue for detecting and discriminating umami taste with human-like performance using umami ligand binding domain called venus flytrap (VFT) domain originating from T1R1 instead of using the whole heterodimeric complex of receptors. Such T1R1 VFT was produced from Escherichia coli (E. coli) with purification and refolding process. It was then immobilized onto graphene-based FET. This bioelectronic tongue for umami taste (BTUT) was able to detect monosodium L-glutamate (MSG) with high sensitivity (ca. 1 nM) and specificity in real-time. The intensity of umami taste was enhanced by inosine monophosphate (IMP) that is very similar to the human taste system. In addition, BTUT allowed efficient reusable property and storage stability. It maintained 90% of normalized signal intensity for five weeks. To develop bioelectronic tongue, this approach using the ligand binding domain of human taste receptor rather than the whole heterodimeric GPCRs has advantages in mass production, reusability, and stability. It also has great potential for various industrial applications such as food, beverage, and pharmaceutical fields.
- Subjects :
- Inosine monophosphate
Taste
Biomedical Engineering
Biophysics
Sensory system
Class C GPCR
Biosensing Techniques
02 engineering and technology
Umami
01 natural sciences
Receptors, G-Protein-Coupled
Protein Domains
Tongue
Taste receptor
Escherichia coli
Electrochemistry
medicine
Humans
G protein-coupled receptor
Chemistry
010401 analytical chemistry
Electrochemical Techniques
General Medicine
021001 nanoscience & nanotechnology
0104 chemical sciences
medicine.anatomical_structure
Biochemistry
0210 nano-technology
Protein Binding
Biotechnology
Subjects
Details
- ISSN :
- 09565663
- Volume :
- 117
- Database :
- OpenAIRE
- Journal :
- Biosensors and Bioelectronics
- Accession number :
- edsair.doi.dedup.....534cd5cd26d578f747b9c69e732a3a1b
- Full Text :
- https://doi.org/10.1016/j.bios.2018.06.028