Back to Search Start Over

Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer’s disease-related proteins

Authors :
Duc M. Duong
Nicholas T. Seyfried
Eric B. Dammer
Hailian Xiao
James J. Lah
Tianwen Gao
Chadwick M. Hales
Syed Ali Raza
Ranjita Betarbet
James A. Webster
Allan I. Levey
Srikant Rangaraju
Source :
Molecular Neurodegeneration, Vol 13, Iss 1, Pp 1-19 (2018), Molecular Neurodegeneration
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Background Microglia are innate immune cells of the brain that perform phagocytic and inflammatory functions in disease conditions. Transcriptomic studies of acutely-isolated microglia have provided novel insights into their molecular and functional diversity in homeostatic and neurodegenerative disease states. State-of-the-art mass spectrometry methods can comprehensively characterize proteomic alterations in microglia in neurodegenerative disorders, potentially providing novel functionally relevant molecular insights that are not provided by transcriptomics. However, comprehensive proteomic profiling of adult primary microglia in neurodegenerative disease conditions has not been performed. Methods We performed quantitative mass spectrometry based proteomic analyses of purified CD11b+ acutely-isolated microglia from adult (6 mo) mice in normal, acute neuroinflammatory (LPS-treatment) and chronic neurodegenerative states (5xFAD model of Alzheimer’s disease [AD]). Differential expression analyses were performed to characterize specific microglial proteomic changes in 5xFAD mice and identify overlap with LPS-induced pro-inflammatory changes. Our results were also contrasted with existing proteomic data from wild-type mouse microglia and from existing microglial transcriptomic data from wild-type and 5xFAD mice. Neuropathological validation studies of select proteins were performed in human AD and 5xFAD brains. Results Of 4133 proteins identified, 187 microglial proteins were differentially expressed in the 5xFAD mouse model of AD pathology, including proteins with previously known (Apoe, Clu and Htra1) as well as previously unreported relevance to AD biology (Cotl1 and Hexb). Proteins upregulated in 5xFAD microglia shared significant overlap with pro-inflammatory changes observed in LPS-treated mice. Several proteins increased in human AD brain were also upregulated by 5xFAD microglia (Aβ peptide, Apoe, Htra1, Cotl1 and Clu). Cotl1 was identified as a novel microglia-specific marker with increased expression and strong association with AD neuropathology. Apoe protein was also detected within plaque-associated microglia in which Apoe and Aβ were highly co-localized, suggesting a role for Apoe in phagocytic clearance of Aβ. Conclusions We report a comprehensive proteomic study of adult mouse microglia derived from acute neuroinflammation and AD models, representing a valuable resource to the neuroscience research community. We highlight shared and unique microglial proteomic changes in acute neuroinflammation aging and AD mouse models and identify novel roles for microglial proteins in human neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s13024-018-0266-4) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
17501326
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Molecular Neurodegeneration
Accession number :
edsair.doi.dedup.....53108d68b0ad713fe7e242b23c433e81
Full Text :
https://doi.org/10.1186/s13024-018-0266-4