Back to Search Start Over

On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields

Authors :
Jaitra Chattopadhyay
S. Muthukrishnan
Source :
Acta Arithmetica. 197:105-110
Publication Year :
2021
Publisher :
Institute of Mathematics, Polish Academy of Sciences, 2021.

Abstract

Let $k \geq 1$ be a cube-free integer with $k \equiv 1 \pmod {9}$ and $\gcd(k, 7\cdot 571)=1$. In this paper, we prove the existence of infinitely many triples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$ and $\mathbb{Q}(\sqrt{d+k^2})$ with $d \in \mathbb{Z}$ such that the class number of each of them is divisible by $3$. This affirmatively answers a weaker version of a conjecture of Iizuka \cite{iizuka-jnt}.<br />To appear in Acta Arithmetica

Details

ISSN :
17306264 and 00651036
Volume :
197
Database :
OpenAIRE
Journal :
Acta Arithmetica
Accession number :
edsair.doi.dedup.....52dcabdbeaebd070f2a2c833bb7fb56c
Full Text :
https://doi.org/10.4064/aa200221-16-6