Back to Search
Start Over
Thermodynamics and kinetics of CO and benzene adsorption on Pt(111) studied with pulsed molecular beams and microcalorimetry
- Publication Year :
- 2023
- Publisher :
- Elsevier, 2023.
-
Abstract
- The adsorption and desorption of the system CO/Pt(111) and C6H6/Pt(111) at 300 K has been investigated with a pulsed molecular beam method in combination with a microcalorimeter. For benzene the sticking probability has been measured in dependence of the coverage θ. For coverages θ > 0.8 transient adsorption is observed. From an analysis of the time-dependence of the molecular beam pulses the rate constant for desorption is determined to be 5.6 s− 1. With a precursor-mediated kinetic adsorption model this allows to obtain also the hopping rate constant of 95.5 s− 1. The measured adsorption enthalpies could be best described by (199 − 77θ − 51θ2) kJ/mol, in good agreement with the literature values. For CO on Pt(111) also transient adsorption has been observed for θ > 0.95 at 300 K. The kinetic analysis yields rate constants for desorption and hopping of 20 s−1 and 51 s−1, respectively. The heats of adsorption show a linear dependence on coverage (131 − 38θ) kJ/mol between 0 ≤ θ ≤ 0.3, which is consistent with the desorption data from the literature. For higher coverage (up to θ = 0.9ML) a slope of −63 kJ/mol describes the decrease of the differential heat of adsorption best. This result is only compatible with desorption experiments, if the pre-exponential factor decreases strongly at higher coverage. We found good agreement with recent quantum chemical calculations made for (θ = 0.5ML).
- Subjects :
- Isothermal microcalorimetry
Kinetics
Analytical chemistry
Thermodynamics
Surfaces and Interfaces
Condensed Matter Physics
Surfaces, Coatings and Films
chemistry.chemical_compound
Adsorption
Reaction rate constant
chemistry
Desorption
Materials Chemistry
Sticking probability
Benzene
Molecular beam
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....52a0ec30ba1b03ea922c618b576b6e93