Back to Search Start Over

Polypyrrole Nanopipes as a Promising Cathode Material for Li-ion Batteries and Li-ion Capacitors : Two-in-One Approach

Authors :
Do-Heyoung Kim
Pedro Gómez-Romero
Nilesh R. Chodankar
Ajay D. Jagadale
Rudolf Holze
Deepak P. Dubal
University of Adelaide
Australian Research Council
Ministerio de Economía, Industria y Competitividad (España)
Generalitat de Catalunya
Ministerio de Economía y Competitividad (España)
Source :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Digital.CSIC. Repositorio Institucional del CSIC
Publication Year :
2021

Abstract

Lithium ion capacitor (LIC) is a promising energy storage system that can simultaneously provide high energy with high rate (high power). Generally, LIC is fabricated using capacitive cathode (activated carbon, AC) and insertion‐type anode (graphite) with Li‐ion based organic electrolyte. However, the limited specific capacities of both anode and cathode materials limit the performance of LIC, in particular energy density. In this context, we have developed “two in one” synthetic approach to engineer both cathode and anode from single precursor for high performance LIC. Firstly, we have engineered a low cost 1D polypyrrole nanopipes (PPy‐NPipes), which was utilized as cathode material and delivered a maximum specific capacity of 126 mAh/g, far higher than that of conventional AC cathodes (35 mAh/g). Later, N doped carbon nanopipes (N‐CNPipes) was derived from direct carbonization of PPy‐NPipes and successfully applied as anode material in LIC. Thus, a full LIC was fabricated using both pseudo‐capacitive cathode (PPy‐NPipes) and anode (N‐CNPipes) materials, respectively. The cell delivered a remarkable specific energy of 107 Wh/kg with maximum specific power of 10 kW/kg and good capacity retention of 93 % over 2000 cycles. Thus, this work provide a new approach of utilization of nanostructured conducting polymers as a promising pseudocapacitive cathode for high performance energy storage systems.<br />DPD acknowledges support of University of Adelaide, Australia by University Research Fellowship (Research for Impact Fellow). The ICN2 is supported by the Severo Ochoa program of the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO, grant no. SEV‐2013‐0295) and funded by the CERCA program/Generalitat de Catalunya.

Details

Database :
OpenAIRE
Journal :
Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Digital.CSIC. Repositorio Institucional del CSIC
Accession number :
edsair.doi.dedup.....527f13ecb28841b74f50090c30be89b0