Back to Search Start Over

Selective Blockade of Voltage-Gated Potassium Channels Reduces Inflammatory Bone Resorption in Experimental Periodontal Disease

Authors :
Paloma Valverde
Toshihisa Kawai
Martin A. Taubman
Source :
Journal of Bone and Mineral Research. 19:155-164
Publication Year :
2003
Publisher :
Wiley, 2003.

Abstract

The effects of the potassium channel (Kv1.3) blocker kaliotoxin on T-cell-mediated periodontal bone resorption were examined in rats. Systemic administration of kaliotoxin abrogated the bone resorption in conjunction with decreased RANKL mRNA expression by T-cells in gingival tissue. This study suggests a plausible therapeutic approach for inflammatory bone resorption by targeting Kv1.3. Introduction: Kv1.3 is a critical potassium channel to counterbalance calcium influx at T-cell receptor activation. It is not known if Kv1.3 also regulates RANKL expression by antigen-activated T-cells, and consequently affects in vivo bone resorption mediated by activated T-cells. Materials and Methods:Actinobacillus actinomycetemcomitans 29-kDa outer membrane protein-specific Th1-clone cells were used to evaluate the expression of Kv1.3 (using reverse transcriptase-polymerase chain reaction [RT-PCR] and Western blot analyses) and the effects of the potassium channel blocker kaliotoxin (0–100 nM) on T-cell activation parameters ([3H]thymidine incorporation assays and ELISA) and expression of RANKL and osteoprotegerin (OPG; flow cytometry, Western blot, and RT-PCR analyses). A rat periodontal disease model based on the adoptive transfer of activated 29-kDa outer membrane protein-specific Th1 clone cells was used to analyze the effects of kaliotoxin in T-cell-mediated alveolar bone resorption and RANKL and OPG mRNA expression by gingival T-cells. Stimulated 29-kDa outer membrane protein-specific Th1 clone cells were transferred intravenously on day 0 to all animals used in the study (n = 7 animals per group). Ten micrograms of kaliotoxin were injected subcutaneously twice per day on days 0, 1, 2, and 3, after adoptive transfer of the T-cells. The control group of rats was injected with saline as placebo on the same days as injections for the kaliotoxin-treated group. The MOCP-5 osteoclast precursor cell line was used in co-culture studies with fixed 29-kDa outer membrane protein-specific Th1-clone cells to measure T-cell-derived RANKL-mediated effects on osteoclastogenesis and resorption pit formation assays in vitro. Statistical significance was evaluated by Student's t-test. Results: Kaliotoxin decreased T-cell activation parameters of 29-kDa outer membrane protein-specific Th1 clone cells in vitro and in vivo. Most importantly, kaliotoxin administration resulted in an 84% decrease of the bone resorption induced in the saline-treated control group. T-cells recovered from the gingival tissue of kaliotoxin-treated rats displayed lower ratios of RANKL and OPG mRNA expression than those recovered from the control group. The ratio of RANKL and osteoprotegerin protein expression and induction of RANKL-dependent osteoclastogenesis by the activated T-cells were also markedly decreased after kaliotoxin treatments in vitro. Conclusion: The use of kaliotoxin or other means to block Kv1.3 may constitute a potential intervention therapy to prevent alveolar bone loss in periodontal disease.

Details

ISSN :
08840431
Volume :
19
Database :
OpenAIRE
Journal :
Journal of Bone and Mineral Research
Accession number :
edsair.doi.dedup.....5251799cf7e2610de36d5193e7ec6e17
Full Text :
https://doi.org/10.1359/jbmr.0301213