Back to Search Start Over

Protein kinase D, ubiquitin and proteasome pathways are involved in adenosine receptor-stimulated NR4A expression in myeloid cells

Authors :
Hugh E. Giffney
Evelyn P. Murphy
Daniel Crean
Eoin P. Cummins
David J. Brayden
Source :
Biochemical and biophysical research communications. 555
Publication Year :
2021

Abstract

Adenosine is a purine nucleoside pivotal for homeostasis in cells and tissues. Stimulation of the adenosine receptors (AR) has been shown to regulate the nuclear orphan receptor 4A (NR4A1-3) family, resulting in attenuation of hyper-inflammatory responses in myeloid cells. The NR4A1-3 orphan receptors are early immediate response genes and transcriptional regulators of cell and tissue homeostasis. The signal transduction and transcriptional mechanism(s) of how AR-stimulation promotes NR4A expression in myeloid cells is unknown and is the focus of this study. We confirm that adenosine and the stable analogue, 5′-N-Ethylcarboxamidoadenosine (NECA), enhance NR4A1-3 expression in THP-1 cells. Pharmacological approaches identified that protein kinase D (PKD) mediates AR-stimulated NR4A expression in myeloid cells and reveals no involvement of PKA nor PKC. The role of NF-κB, a principal regulator of NR4A expression in myeloid cells, was examined as a possible transcriptional regulator downstream of PKD. Utilising BAY11-7082 and MG-132, inhibitors of the respective ubiquitin and proteasome pathways essential for NF-κB activation, suggested a prospective role for NF-κB, or more specifically signalling via IKKα/β. However, biological interventional studies using overexpression of IκBα in myeloid cells and MEF cells lacking IKKα and IKKβ (IKKα/β−/-) revealed the NF-κB pathway is not utilised in mediating AR-stimulated NR4A expression. Thus, this study contributes mechanistic insight into how AR signalling modulates the expression of NR4A receptors, pivotal regulators of inflammatory responses in myeloid cells.

Details

ISSN :
10902104
Volume :
555
Database :
OpenAIRE
Journal :
Biochemical and biophysical research communications
Accession number :
edsair.doi.dedup.....523f9dca61d52dc4877eb2bfef9bcca1