Back to Search Start Over

Combining an Autoencoder and a Variational Autoencoder for Explaining the Machine Learning Model Predictions

Authors :
Maxim S. Kovalev
Lev V. Utkin
Pavel Drobintsev
Andrei V. Konstantinov
Source :
FRUCT, Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol 28, Iss 1, Pp 488-494 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

A method for explaining a deep learning model prediction is proposed. It uses a combination of the standard autoencoder and the variational autoencoder. The standard autoencoder is exploited to reconstruct original images and to produce hidden representation vectors. The variational autoencoder is trained to transform the deep learning model outputs (embedding vectors) into the hidden representation vectors of the standard autoencoder. In explaining or testing phase, the variational autoencoder produces a set of vectors based on the explained image embedding. Then the trained decoder part of the standard autoencoder reconstructs a set of images which form a heatmap explaining the original explained image. In fact, the variational autoencoder plays a role of the perturbation technique of images. Numerical experiments with the well-known datasets MNIST and CIFAR10 illustrate the propose method.

Details

Database :
OpenAIRE
Journal :
2021 28th Conference of Open Innovations Association (FRUCT)
Accession number :
edsair.doi.dedup.....521e27ebcfc615cba6705baadd52bff2
Full Text :
https://doi.org/10.23919/fruct50888.2021.9347612